class cv::BOWKMeansTrainer
Overview
kmeans -based class to train visual vocabulary using the bag of visual words approach. : Moreā¦
#include <features2d.hpp> class BOWKMeansTrainer: public cv::BOWTrainer { public: // construction BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit = TermCriteria(), int attempts = 3, int flags = KMEANS_PP_CENTERS ); // methods virtual Mat cluster() const; virtual Mat cluster(const Mat& descriptors) const; protected: // fields int attempts; int clusterCount; int flags; TermCriteria termcrit; };
Inherited Members
public: // methods void add(const Mat& descriptors); virtual void clear(); virtual Mat cluster() const = 0; virtual Mat cluster(const Mat& descriptors) const = 0; int descriptorsCount() const; const std::vector<Mat>& getDescriptors() const; protected: // fields std::vector<Mat> descriptors; int size;
Detailed Documentation
kmeans -based class to train visual vocabulary using the bag of visual words approach. :
Construction
BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit = TermCriteria(), int attempts = 3, int flags = KMEANS_PP_CENTERS )
The constructor.
See also:
Methods
virtual Mat cluster() const
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
virtual Mat cluster(const Mat& descriptors) const
Clusters train descriptors.
The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first variant of the method, train descriptors stored in the object are clustered. In the second variant, input descriptors are clustered.
Parameters:
descriptors | Descriptors to cluster. Each row of the descriptors matrix is a descriptor. Descriptors are not added to the inner train descriptor set. |