class cv::DescriptorMatcher
Overview
Abstract base class for matching keypoint descriptors. Moreā¦
#include <features2d.hpp> class DescriptorMatcher: public cv::Algorithm { public: // enums enum { FLANNBASED = 1, BRUTEFORCE = 2, BRUTEFORCE_L1 = 3, BRUTEFORCE_HAMMING = 4, BRUTEFORCE_HAMMINGLUT = 5, BRUTEFORCE_SL2 = 6, }; // classes class DescriptorCollection; // methods virtual void add(InputArrayOfArrays descriptors); virtual void clear(); virtual Ptr<DescriptorMatcher> clone(bool emptyTrainData = false) const = 0; virtual bool empty() const; const std::vector<Mat>& getTrainDescriptors() const; virtual bool isMaskSupported() const = 0; void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors, std::vector<std::vector<DMatch>>& matches, int k, InputArray mask = noArray(), bool compactResult = false ) const; void knnMatch( InputArray queryDescriptors, std::vector<std::vector<DMatch>>& matches, int k, InputArrayOfArrays masks = noArray(), bool compactResult = false ); void match( InputArray queryDescriptors, InputArray trainDescriptors, std::vector<DMatch>& matches, InputArray mask = noArray() ) const; void match( InputArray queryDescriptors, std::vector<DMatch>& matches, InputArrayOfArrays masks = noArray() ); void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors, std::vector<std::vector<DMatch>>& matches, float maxDistance, InputArray mask = noArray(), bool compactResult = false ) const; void radiusMatch( InputArray queryDescriptors, std::vector<std::vector<DMatch>>& matches, float maxDistance, InputArrayOfArrays masks = noArray(), bool compactResult = false ); void read(const String& fileName); virtual void read(const FileNode& fn); virtual void train(); void write(const String& fileName) const; virtual void write(FileStorage& fs) const; static Ptr<DescriptorMatcher> create(const String& descriptorMatcherType); static Ptr<DescriptorMatcher> create(int matcherType); protected: // fields std::vector<Mat> trainDescCollection; std::vector<UMat> utrainDescCollection; // methods void checkMasks( InputArrayOfArrays masks, int queryDescriptorsCount ) const; virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch>>& matches, int k, InputArrayOfArrays masks = noArray(), bool compactResult = false ) = 0; virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch>>& matches, float maxDistance, InputArrayOfArrays masks = noArray(), bool compactResult = false ) = 0; static Mat clone_op(Mat m); static bool isMaskedOut( InputArrayOfArrays masks, int queryIdx ); static bool isPossibleMatch( InputArray mask, int queryIdx, int trainIdx ); }; // direct descendants class BFMatcher; class FlannBasedMatcher;
Inherited Members
public: // methods virtual void clear(); virtual bool empty() const; virtual String getDefaultName() const; virtual void read(const FileNode& fn); virtual void save(const String& filename) const; virtual void write(FileStorage& fs) const; template <typename _Tp> static Ptr<_Tp> load( const String& filename, const String& objname = String() ); template <typename _Tp> static Ptr<_Tp> loadFromString( const String& strModel, const String& objname = String() ); template <typename _Tp> static Ptr<_Tp> read(const FileNode& fn); protected: // methods void writeFormat(FileStorage& fs) const;
Detailed Documentation
Abstract base class for matching keypoint descriptors.
It has two groups of match methods: for matching descriptors of an image with another image or with an image set.
Methods
virtual void add(InputArrayOfArrays descriptors)
Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor collection.
If the collection is not empty, the new descriptors are added to existing train descriptors.
Parameters:
descriptors | Descriptors to add. Each descriptors[i] is a set of descriptors from the same train image. |
virtual void clear()
Clears the train descriptor collections.
virtual Ptr<DescriptorMatcher> clone(bool emptyTrainData = false) const = 0
Clones the matcher.
Parameters:
emptyTrainData | If emptyTrainData is false, the method creates a deep copy of the object, that is, copies both parameters and train data. If emptyTrainData is true, the method creates an object copy with the current parameters but with empty train data. |
virtual bool empty() const
Returns true if there are no train descriptors in the both collections.
const std::vector<Mat>& getTrainDescriptors() const
Returns a constant link to the train descriptor collection trainDescCollection .
virtual bool isMaskSupported() const = 0
Returns true if the descriptor matcher supports masking permissible matches.
void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors, std::vector<std::vector<DMatch>>& matches, int k, InputArray mask = noArray(), bool compactResult = false ) const
Finds the k best matches for each descriptor from a query set.
These extended variants of DescriptorMatcher::match methods find several best matches for each query descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match for the details about query and train descriptors.
Parameters:
queryDescriptors | Query set of descriptors. |
trainDescriptors | Train set of descriptors. This set is not added to the train descriptors collection stored in the class object. |
mask | Mask specifying permissible matches between an input query and train matrices of descriptors. |
matches | Matches. Each matches[i] is k or less matches for the same query descriptor. |
k | Count of best matches found per each query descriptor or less if a query descriptor has less than k possible matches in total. |
compactResult | Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors. |
void knnMatch( InputArray queryDescriptors, std::vector<std::vector<DMatch>>& matches, int k, InputArrayOfArrays masks = noArray(), bool compactResult = false )
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
Parameters:
queryDescriptors | Query set of descriptors. |
matches | Matches. Each matches[i] is k or less matches for the same query descriptor. |
k | Count of best matches found per each query descriptor or less if a query descriptor has less than k possible matches in total. |
masks | Set of masks. Each masks[i] specifies permissible matches between the input query descriptors and stored train descriptors from the i-th image trainDescCollection[i]. |
compactResult | Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors. |
void match( InputArray queryDescriptors, InputArray trainDescriptors, std::vector<DMatch>& matches, InputArray mask = noArray() ) const
Finds the best match for each descriptor from a query set.
In the first variant of this method, the train descriptors are passed as an input argument. In the second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is used. Optional mask (or masks) can be passed to specify which query and training descriptors can be matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if mask.at<uchar>(i,j) is non-zero.
Parameters:
queryDescriptors | Query set of descriptors. |
trainDescriptors | Train set of descriptors. This set is not added to the train descriptors collection stored in the class object. |
matches | Matches. If a query descriptor is masked out in mask , no match is added for this descriptor. So, matches size may be smaller than the query descriptors count. |
mask | Mask specifying permissible matches between an input query and train matrices of descriptors. |
void match( InputArray queryDescriptors, std::vector<DMatch>& matches, InputArrayOfArrays masks = noArray() )
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
Parameters:
queryDescriptors | Query set of descriptors. |
matches | Matches. If a query descriptor is masked out in mask , no match is added for this descriptor. So, matches size may be smaller than the query descriptors count. |
masks | Set of masks. Each masks[i] specifies permissible matches between the input query descriptors and stored train descriptors from the i-th image trainDescCollection[i]. |
void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors, std::vector<std::vector<DMatch>>& matches, float maxDistance, InputArray mask = noArray(), bool compactResult = false ) const
For each query descriptor, finds the training descriptors not farther than the specified distance.
For each query descriptor, the methods find such training descriptors that the distance between the query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are returned in the distance increasing order.
Parameters:
queryDescriptors | Query set of descriptors. |
trainDescriptors | Train set of descriptors. This set is not added to the train descriptors collection stored in the class object. |
matches | Found matches. |
compactResult | Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors. |
maxDistance | Threshold for the distance between matched descriptors. Distance means here metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured in Pixels)! |
mask | Mask specifying permissible matches between an input query and train matrices of descriptors. |
void radiusMatch( InputArray queryDescriptors, std::vector<std::vector<DMatch>>& matches, float maxDistance, InputArrayOfArrays masks = noArray(), bool compactResult = false )
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
Parameters:
queryDescriptors | Query set of descriptors. |
matches | Found matches. |
maxDistance | Threshold for the distance between matched descriptors. Distance means here metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured in Pixels)! |
masks | Set of masks. Each masks[i] specifies permissible matches between the input query descriptors and stored train descriptors from the i-th image trainDescCollection[i]. |
compactResult | Parameter used when the mask (or masks) is not empty. If compactResult is false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, the matches vector does not contain matches for fully masked-out query descriptors. |
virtual void read(const FileNode& fn)
Reads algorithm parameters from a file storage.
virtual void train()
Trains a descriptor matcher.
Trains a descriptor matcher (for example, the flann index). In all methods to match, the method train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher) have an empty implementation of this method. Other matchers really train their inner structures (for example, FlannBasedMatcher trains flann::Index).
virtual void write(FileStorage& fs) const
Stores algorithm parameters in a file storage.
static Ptr<DescriptorMatcher> create(const String& descriptorMatcherType)
Creates a descriptor matcher of a given type with the default parameters (using default constructor).
Parameters:
descriptorMatcherType | Descriptor matcher type. Now the following matcher types are supported:
|
virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch>>& matches, int k, InputArrayOfArrays masks = noArray(), bool compactResult = false ) = 0
In fact the matching is implemented only by the following two methods. These methods suppose that the class object has been trained already. Public match methods call these methods after calling train().