class cv::KAZE
Overview
Class implementing the KAZE keypoint detector and descriptor extractor, described in [2]. Moreā¦
#include <features2d.hpp> class KAZE: public cv::Feature2D { public: // enums enum { DIFF_PM_G1 = 0, DIFF_PM_G2 = 1, DIFF_WEICKERT = 2, DIFF_CHARBONNIER = 3, }; // methods static Ptr<KAZE> create( bool extended = false, bool upright = false, float threshold = 0.001f, int nOctaves = 4, int nOctaveLayers = 4, int diffusivity = KAZE::DIFF_PM_G2 ); virtual int getDiffusivity() const = 0; virtual bool getExtended() const = 0; virtual int getNOctaveLayers() const = 0; virtual int getNOctaves() const = 0; virtual double getThreshold() const = 0; virtual bool getUpright() const = 0; virtual void setDiffusivity(int diff) = 0; virtual void setExtended(bool extended) = 0; virtual void setNOctaveLayers(int octaveLayers) = 0; virtual void setNOctaves(int octaves) = 0; virtual void setThreshold(double threshold) = 0; virtual void setUpright(bool upright) = 0; };
Inherited Members
public: // methods virtual void clear(); virtual bool empty() const; virtual String getDefaultName() const; virtual void read(const FileNode& fn); virtual void save(const String& filename) const; virtual void write(FileStorage& fs) const; template <typename _Tp> static Ptr<_Tp> load( const String& filename, const String& objname = String() ); template <typename _Tp> static Ptr<_Tp> loadFromString( const String& strModel, const String& objname = String() ); template <typename _Tp> static Ptr<_Tp> read(const FileNode& fn); virtual void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ); virtual void compute( InputArrayOfArrays images, std::vector<std::vector<KeyPoint>>& keypoints, OutputArrayOfArrays descriptors ); virtual int defaultNorm() const; virtual int descriptorSize() const; virtual int descriptorType() const; virtual void detect( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask = noArray() ); virtual void detect( InputArrayOfArrays images, std::vector<std::vector<KeyPoint>>& keypoints, InputArrayOfArrays masks = noArray() ); virtual void detectAndCompute( InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints, OutputArray descriptors, bool useProvidedKeypoints = false ); virtual bool empty() const; void read(const String& fileName); virtual void read(const FileNode& fn); void write(const String& fileName) const; virtual void write(FileStorage& fs) const; protected: // methods void writeFormat(FileStorage& fs) const;
Detailed Documentation
Class implementing the KAZE keypoint detector and descriptor extractor, described in [2].
AKAZE descriptor can only be used with KAZE or AKAZE keypoints .. [ABD12] KAZE Features. Pablo F. Alcantarilla, Adrien Bartoli and Andrew J. Davison. In European Conference on Computer Vision (ECCV), Fiorenze, Italy, October 2012.
Methods
static Ptr<KAZE> create( bool extended = false, bool upright = false, float threshold = 0.001f, int nOctaves = 4, int nOctaveLayers = 4, int diffusivity = KAZE::DIFF_PM_G2 )
The KAZE constructor.
Parameters:
extended | Set to enable extraction of extended (128-byte) descriptor. |
upright | Set to enable use of upright descriptors (non rotation-invariant). |
threshold | Detector response threshold to accept point |
nOctaves | Maximum octave evolution of the image |
nOctaveLayers | Default number of sublevels per scale level |
diffusivity | Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or DIFF_CHARBONNIER |