template class cv::flann::GenericIndex

Overview

The FLANN nearest neighbor index class. This class is templated with the type of elements for which the index is built. Moreā€¦

#include <flann.hpp>

template <typename Distance>
class GenericIndex
{
public:
    // typedefs

    typedef Distance::ResultType DistanceType;
    typedef Distance::ElementType ElementType;

    // construction

    GenericIndex(
        const Mat& features,
        const ::cvflann::IndexParams& params,
        Distance distance = Distance()
        );

    // methods

    const ::cvflann::IndexParams*
    getIndexParameters();

    ::cvflann::IndexParams
    getParameters();

    void
    knnSearch(
        const std::vector<ElementType>& query,
        std::vector<int>& indices,
        std::vector<DistanceType>& dists,
        int knn,
        const ::cvflann::SearchParams& params
        );

    void
    knnSearch(
        const Mat& queries,
        Mat& indices,
        Mat& dists,
        int knn,
        const ::cvflann::SearchParams& params
        );

    int
    radiusSearch(
        const std::vector<ElementType>& query,
        std::vector<int>& indices,
        std::vector<DistanceType>& dists,
        DistanceType radius,
        const ::cvflann::SearchParams& params
        );

    int
    radiusSearch(
        const Mat& query,
        Mat& indices,
        Mat& dists,
        DistanceType radius,
        const ::cvflann::SearchParams& params
        );

    void
    save(String filename);

    int
    size() const;

    int
    veclen() const;
};

Detailed Documentation

The FLANN nearest neighbor index class. This class is templated with the type of elements for which the index is built.

Construction

GenericIndex(
    const Mat& features,
    const ::cvflann::IndexParams& params,
    Distance distance = Distance()
    )

Constructs a nearest neighbor search index for a given dataset.

  • LinearIndexParams When passing an object of this type, the index will perform a linear, brute-force search. :

    struct LinearIndexParams : public IndexParams
    {
    };
    
  • KDTreeIndexParams When passing an object of this type the index constructed will consist of a set of randomized kd-trees which will be searched in parallel. :

    struct KDTreeIndexParams : public IndexParams
    {
        KDTreeIndexParams( int trees = 4 );
    };
    
  • KMeansIndexParams When passing an object of this type the index constructed will be a hierarchical k-means tree. :

    struct KMeansIndexParams : public IndexParams
    {
        KMeansIndexParams(
            int branching = 32,
            int iterations = 11,
            flann_centers_init_t centers_init = CENTERS_RANDOM,
            float cb_index = 0.2 );
    };
    
  • CompositeIndexParams When using a parameters object of this type the index created combines the randomized kd-trees and the hierarchical k-means tree. :

    struct CompositeIndexParams : public IndexParams
    {
        CompositeIndexParams(
            int trees = 4,
            int branching = 32,
            int iterations = 11,
            flann_centers_init_t centers_init = CENTERS_RANDOM,
            float cb_index = 0.2 );
    };
    
  • LshIndexParams When using a parameters object of this type the index created uses multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007) :

    struct LshIndexParams : public IndexParams
    {
        LshIndexParams(
            unsigned int table_number,
            unsigned int key_size,
            unsigned int multi_probe_level );
    };
    
  • AutotunedIndexParams When passing an object of this type the index created is automatically tuned to offer the best performance, by choosing the optimal index type (randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. :

    struct AutotunedIndexParams : public IndexParams
    {
        AutotunedIndexParams(
            float target_precision = 0.9,
            float build_weight = 0.01,
            float memory_weight = 0,
            float sample_fraction = 0.1 );
    };
    
  • SavedIndexParams This object type is used for loading a previously saved index from the disk. :

    struct SavedIndexParams : public IndexParams
    {
        SavedIndexParams( String filename );
    };
    

Parameters:

features Matrix of containing the features(points) to index. The size of the matrix is num_features x feature_dimensionality and the data type of the elements in the matrix must coincide with the type of the index.
params Structure containing the index parameters. The type of index that will be constructed depends on the type of this parameter. See the description.
distance The method constructs a fast search structure from a set of features using the specified algorithm with specified parameters, as defined by params. params is a reference to one of the following class IndexParams descendants:

Methods

void
knnSearch(
    const std::vector<ElementType>& query,
    std::vector<int>& indices,
    std::vector<DistanceType>& dists,
    int knn,
    const ::cvflann::SearchParams& params
    )

Performs a K-nearest neighbor search for a given query point using the index.

Parameters:

query The query point
indices Vector that will contain the indices of the K-nearest neighbors found. It must have at least knn size.
dists Vector that will contain the distances to the K-nearest neighbors found. It must have at least knn size.
knn Number of nearest neighbors to search for.
params SearchParams