template class cvflann::KMeansIndex
Overview
Hierarchical kmeans index
Contains a tree constructed through a hierarchical kmeans clustering and other information for indexing a set of points for nearest-neighbour matching. More…
#include <kmeans_index.h> template <typename Distance> class KMeansIndex: public cvflann::NNIndex { public: // typedefs typedef void(KMeansIndex::* centersAlgFunction)( int, int *, int, int *, int & ); typedef Distance::ResultType DistanceType; typedef Distance::ElementType ElementType; // structs struct KMeansNode; // classes class KMeansDistanceComputer; // fields centersAlgFunction chooseCenters; // construction KMeansIndex( const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(), Distance d = Distance() ); KMeansIndex(const KMeansIndex&); // methods virtual void buildIndex(); void chooseCentersGonzales( int k, int* indices, int indices_length, int* centers, int& centers_length ); void chooseCentersKMeanspp( int k, int* indices, int indices_length, int* centers, int& centers_length ); void chooseCentersRandom( int k, int* indices, int indices_length, int* centers, int& centers_length ); virtual void findNeighbors( ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams ); int getClusterCenters(Matrix<DistanceType>& centers); virtual IndexParams getParameters() const; virtual flann_algorithm_t getType() const; virtual void loadIndex(FILE* stream); KMeansIndex& operator=(const KMeansIndex&); virtual void saveIndex(FILE* stream); void set_cb_index(float index); virtual size_t size() const; virtual int usedMemory() const; virtual size_t veclen() const; };
Inherited Members
public: // methods virtual void buildIndex() = 0; virtual void findNeighbors( ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams ) = 0; virtual IndexParams getParameters() const = 0; virtual flann_algorithm_t getType() const = 0; virtual void knnSearch( const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params ); virtual void loadIndex(FILE* stream) = 0; virtual int radiusSearch( const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params ); virtual void saveIndex(FILE* stream) = 0; virtual size_t size() const = 0; virtual int usedMemory() const = 0; virtual size_t veclen() const = 0;
Detailed Documentation
Hierarchical kmeans index
Contains a tree constructed through a hierarchical kmeans clustering and other information for indexing a set of points for nearest-neighbour matching.
Construction
KMeansIndex( const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(), Distance d = Distance() )
Index constructor
Params: inputData = dataset with the input features params = parameters passed to the hierarchical k-means algorithm
Methods
virtual void buildIndex()
Builds the index
void chooseCentersGonzales( int k, int* indices, int indices_length, int* centers, int& centers_length )
Chooses the initial centers in the k-means using Gonzales’ algorithm so that the centers are spaced apart from each other.
Params: k = number of centers vecs = the dataset of points indices = indices in the dataset Returns:
void chooseCentersKMeanspp( int k, int* indices, int indices_length, int* centers, int& centers_length )
Chooses the initial centers in the k-means using the algorithm proposed in the KMeans++ paper: Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
Implementation of this function was converted from the one provided in Arthur’s code.
Params: k = number of centers vecs = the dataset of points indices = indices in the dataset Returns:
void chooseCentersRandom( int k, int* indices, int indices_length, int* centers, int& centers_length )
Chooses the initial centers in the k-means clustering in a random manner.
Params: k = number of centers vecs = the dataset of points indices = indices in the dataset indices_length = length of indices vector
virtual void findNeighbors( ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams )
Find set of nearest neighbors to vec. Their indices are stored inside the result object.
Params: result = the result object in which the indices of the nearest-neighbors are stored vec = the vector for which to search the nearest neighbors searchParams = parameters that influence the search algorithm (checks, cb_index)
int getClusterCenters(Matrix<DistanceType>& centers)
Clustering function that takes a cut in the hierarchical k-means tree and return the clusters centers of that clustering. Params: numClusters = number of clusters to have in the clustering computed Returns: number of cluster centers
virtual IndexParams getParameters() const
Returns:
The index parameters
virtual flann_algorithm_t getType() const
Returns:
The index type (kdtree, kmeans,…)
virtual void loadIndex(FILE* stream)
Loads the index from a stream.
Parameters:
stream | The stream from which the index is loaded |
virtual void saveIndex(FILE* stream)
Saves the index to a stream.
Parameters:
stream | The stream to save the index to |
virtual size_t size() const
Returns size of index.
virtual int usedMemory() const
Computes the inde memory usage Returns: memory used by the index
virtual size_t veclen() const
Returns the length of an index feature.