C structures and operations

Overview

// typedefs

typedef void(CV_STDCALL* Cv_iplAllocateImageData)(
    IplImage *,
    int,
    int
    );

typedef IplImage*(CV_STDCALL* Cv_iplCloneImage)(const IplImage *);

typedef IplImage*(CV_STDCALL* Cv_iplCreateImageHeader)(
    int,
    int,
    int,
    char *,
    char *,
    int,
    int,
    int,
    int,
    int,
    IplROI *,
    IplImage *,
    void *,
    IplTileInfo *
    );

typedef IplROI*(CV_STDCALL* Cv_iplCreateROI)(
    int,
    int,
    int,
    int,
    int
    );

typedef void(CV_STDCALL* Cv_iplDeallocate)(
    IplImage *,
    int
    );

typedef int (*CvCmpFunc)(
    const void *a,
    const void *b,
    void *userdata
    );

typedef int (*CvErrorCallback)(
    int status,
    const char *func_name,
    const char *err_msg,
    const char *file_name,
    int line,
    void *userdata
    );

typedef struct CvFileStorage CvFileStorage;
typedef void CvArr;
typedef void* (*CvCloneFunc)(const void *struct_ptr);
typedef struct CvGenericHash CvFileNodeHash;
typedef int CvHistType;
typedef int (*CvIsInstanceFunc)(const void *struct_ptr);
typedef CvContour CvPoint2DSeq;

typedef void* (*CvReadFunc)(
    CvFileStorage *storage,
    CvFileNode *node
    );

typedef void (*CvReleaseFunc)(void **struct_dblptr);
typedef uint64 CvRNG;
typedef int CVStatus;

typedef void (*CvWriteFunc)(
    CvFileStorage *storage,
    const char *name,
    const void *struct_ptr,
    CvAttrList attributes
    );

typedef struct _IplTileInfo IplTileInfo;

// enums

enum
{
    @53::CV_StsOk                     =                       0,
    @53::CV_StsBackTrace              =               -1,
    @53::CV_StsError                  =                   -2,
    @53::CV_StsInternal               =                -3,
    @53::CV_StsNoMem                  =                   -4,
    @53::CV_StsBadArg                 =                  -5,
    @53::CV_StsBadFunc                =                 -6,
    @53::CV_StsNoConv                 =                  -7,
    @53::CV_StsAutoTrace              =               -8,
    @53::CV_HeaderIsNull              =               -9,
    @53::CV_BadImageSize              =              -10,
    @53::CV_BadOffset                 =                 -11,
    @53::CV_BadDataPtr                =                -12,
    @53::CV_BadStep                   =                   -13,
    @53::CV_BadModelOrChSeq           =           -14,
    @53::CV_BadNumChannels            =            -15,
    @53::CV_BadNumChannel1U           =           -16,
    @53::CV_BadDepth                  =                  -17,
    @53::CV_BadAlphaChannel           =           -18,
    @53::CV_BadOrder                  =                  -19,
    @53::CV_BadOrigin                 =                 -20,
    @53::CV_BadAlign                  =                  -21,
    @53::CV_BadCallBack               =               -22,
    @53::CV_BadTileSize               =               -23,
    @53::CV_BadCOI                    =                    -24,
    @53::CV_BadROISize                =                -25,
    @53::CV_MaskIsTiled               =               -26,
    @53::CV_StsNullPtr                =                -27,
    @53::CV_StsVecLengthErr           =           -28,
    @53::CV_StsFilterStructContentErr = -29,
    @53::CV_StsKernelStructContentErr = -30,
    @53::CV_StsFilterOffsetErr        =        -31,
    @53::CV_StsBadSize                =                -201,
    @53::CV_StsDivByZero              =              -202,
    @53::CV_StsInplaceNotSupported    =    -203,
    @53::CV_StsObjectNotFound         =         -204,
    @53::CV_StsUnmatchedFormats       =       -205,
    @53::CV_StsBadFlag                =                -206,
    @53::CV_StsBadPoint               =               -207,
    @53::CV_StsBadMask                =                -208,
    @53::CV_StsUnmatchedSizes         =         -209,
    @53::CV_StsUnsupportedFormat      =      -210,
    @53::CV_StsOutOfRange             =             -211,
    @53::CV_StsParseError             =             -212,
    @53::CV_StsNotImplemented         =         -213,
    @53::CV_StsBadMemBlock            =            -214,
    @53::CV_StsAssert                 =                 -215,
    @53::CV_GpuNotSupported           =           -216,
    @53::CV_GpuApiCallError           =           -217,
    @53::CV_OpenGlNotSupported        =        -218,
    @53::CV_OpenGlApiCallError        =        -219,
    @53::CV_OpenCLApiCallError        =        -220,
    @53::CV_OpenCLDoubleNotSupported  =  -221,
    @53::CV_OpenCLInitError           =           -222,
    @53::CV_OpenCLNoAMDBlasFft        =        -223,
};

// structs

struct CvAttrList;
struct CvBox2D;
struct CvChain;
struct CvContour;
struct CvFileNode;
struct CvGraph;
struct CvGraphEdge;
struct CvGraphScanner;
struct CvGraphVtx;
struct CvGraphVtx2D;
struct CvHistogram;
struct CvLineIterator;
struct CvMat;
struct CvMatND;
struct CvMemBlock;
struct CvMemStorage;
struct CvMemStoragePos;
struct CvModuleInfo;
struct CvNArrayIterator;
struct CvPluginFuncInfo;
struct CvPoint;
struct CvPoint2D32f;
struct CvPoint2D64f;
struct CvPoint3D32f;
struct CvPoint3D64f;
struct CvRect;
struct CvScalar;
struct CvSeq;
struct CvSeqBlock;
struct CvSeqReader;
struct CvSeqWriter;
struct CvSet;
struct CvSetElem;
struct CvSize;
struct CvSize2D32f;
struct CvSlice;
struct CvSparseMat;
struct CvSparseMatIterator;
struct CvSparseNode;
struct CvString;
struct CvStringHashNode;
struct CvTermCriteria;
struct CvTreeNodeIterator;
struct CvTypeInfo;
struct IplConvKernel;
struct IplConvKernelFP;
struct IplImage;
struct IplROI;

// global functions

void
cvAbsDiff(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst
    );

void
cvAbsDiffS(
    const CvArr* src,
    CvArr* dst,
    CvScalar value
    );

void
cvAdd(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    const CvArr* mask = NULL
    );

void
cvAddS(
    const CvArr* src,
    CvScalar value,
    CvArr* dst,
    const CvArr* mask = NULL
    );

void
cvAddWeighted(
    const CvArr* src1,
    double alpha,
    const CvArr* src2,
    double beta,
    double gamma,
    CvArr* dst
    );

void*
cvAlloc(size_t size);

void
cvAnd(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    const CvArr* mask = NULL
    );

void
cvAndS(
    const CvArr* src,
    CvScalar value,
    CvArr* dst,
    const CvArr* mask = NULL
    );

const char*
cvAttrValue(
    const CvAttrList* attr,
    const char* attr_name
    );

CvScalar
cvAvg(
    const CvArr* arr,
    const CvArr* mask = NULL
    );

void
cvAvgSdv(
    const CvArr* arr,
    CvScalar* mean,
    CvScalar* std_dev,
    const CvArr* mask = NULL
    );

void
cvBackProjectPCA(
    const CvArr* proj,
    const CvArr* mean,
    const CvArr* eigenvects,
    CvArr* result
    );

void
cvCalcCovarMatrix(
    const CvArr** vects,
    int count,
    CvArr* cov_mat,
    CvArr* avg,
    int flags
    );

void
cvCalcPCA(
    const CvArr* data,
    CvArr* mean,
    CvArr* eigenvals,
    CvArr* eigenvects,
    int flags
    );

void
cvCartToPolar(
    const CvArr* x,
    const CvArr* y,
    CvArr* magnitude,
    CvArr* angle = NULL,
    int angle_in_degrees = 0
    );

float
cvCbrt(float value);

void
cvChangeSeqBlock(
    void* reader,
    int direction
    );

int
cvCheckArr(
    const CvArr* arr,
    int flags = 0,
    double min_val = 0,
    double max_val = 0
    );

int
cvCheckHardwareSupport(int feature);

CvTermCriteria
cvCheckTermCriteria(
    CvTermCriteria criteria,
    double default_eps,
    int default_max_iters
    );

void
cvClearGraph(CvGraph* graph);

void
cvClearMemStorage(CvMemStorage* storage);

void
cvClearND(
    CvArr* arr,
    const int* idx
    );

void
cvClearSeq(CvSeq* seq);

void
cvClearSet(CvSet* set_header);

void*
cvClone(const void* struct_ptr);

CvGraph*
cvCloneGraph(
    const CvGraph* graph,
    CvMemStorage* storage
    );

IplImage*
cvCloneImage(const IplImage* image);

CvMat*
cvCloneMat(const CvMat* mat);

CvMatND*
cvCloneMatND(const CvMatND* mat);

CvSeq*
cvCloneSeq(
    const CvSeq* seq,
    CvMemStorage* storage = NULL
    );

CvSparseMat*
cvCloneSparseMat(const CvSparseMat* mat);

void
cvCmp(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    int cmp_op
    );

void
cvCmpS(
    const CvArr* src,
    double value,
    CvArr* dst,
    int cmp_op
    );

void
cvCompleteSymm(
    CvMat* matrix,
    int LtoR = 0
    );

void
cvConvertScale(
    const CvArr* src,
    CvArr* dst,
    double scale = 1,
    double shift = 0
    );

void
cvConvertScaleAbs(
    const CvArr* src,
    CvArr* dst,
    double scale = 1,
    double shift = 0
    );

void
cvCopy(
    const CvArr* src,
    CvArr* dst,
    const CvArr* mask = NULL
    );

int
cvCountNonZero(const CvArr* arr);

CvMemStorage*
cvCreateChildMemStorage(CvMemStorage* parent);

void
cvCreateData(CvArr* arr);

CvGraph*
cvCreateGraph(
    int graph_flags,
    int header_size,
    int vtx_size,
    int edge_size,
    CvMemStorage* storage
    );

CvGraphScanner*
cvCreateGraphScanner(
    CvGraph* graph,
    CvGraphVtx* vtx = NULL,
    int mask = -1
    );

IplImage*
cvCreateImage(
    CvSize size,
    int depth,
    int channels
    );

IplImage*
cvCreateImageHeader(
    CvSize size,
    int depth,
    int channels
    );

CvMat*
cvCreateMat(
    int rows,
    int cols,
    int type
    );

CvMat*
cvCreateMatHeader(
    int rows,
    int cols,
    int type
    );

CvMatND*
cvCreateMatND(
    int dims,
    const int* sizes,
    int type
    );

CvMatND*
cvCreateMatNDHeader(
    int dims,
    const int* sizes,
    int type
    );

CvMemStorage*
cvCreateMemStorage(int block_size = 0);

CvSeq*
cvCreateSeq(
    int seq_flags,
    size_t header_size,
    size_t elem_size,
    CvMemStorage* storage
    );

void
cvCreateSeqBlock(CvSeqWriter* writer);

CvSet*
cvCreateSet(
    int set_flags,
    int header_size,
    int elem_size,
    CvMemStorage* storage
    );

CvSparseMat*
cvCreateSparseMat(
    int dims,
    const int* sizes,
    int type
    );

void
cvCrossProduct(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst
    );

void*
cvCvtSeqToArray(
    const CvSeq* seq,
    void* elements,
    CvSlice slice = CV_WHOLE_SEQ
    );

void
cvDCT(
    const CvArr* src,
    CvArr* dst,
    int flags
    );

void
cvDecRefData(CvArr* arr);

double
cvDet(const CvArr* mat);

void
cvDFT(
    const CvArr* src,
    CvArr* dst,
    int flags,
    int nonzero_rows = 0
    );

void
cvDiv(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    double scale = 1
    );

double
cvDotProduct(
    const CvArr* src1,
    const CvArr* src2
    );

void
cvEigenVV(
    CvArr* mat,
    CvArr* evects,
    CvArr* evals,
    double eps = 0,
    int lowindex = -1,
    int highindex = -1
    );

CvSeq*
cvEndWriteSeq(CvSeqWriter* writer);

void
cvEndWriteStruct(CvFileStorage* fs);

void
cvError(
    int status,
    const char* func_name,
    const char* err_msg,
    const char* file_name,
    int line
    );

int
cvErrorFromIppStatus(int ipp_status);

const char*
cvErrorStr(int status);

void
cvExp(
    const CvArr* src,
    CvArr* dst
    );

float
cvFastArctan(
    float y,
    float x
    );

CvGraphEdge*
cvFindGraphEdge(
    const CvGraph* graph,
    int start_idx,
    int end_idx
    );

CvGraphEdge*
cvFindGraphEdgeByPtr(
    const CvGraph* graph,
    const CvGraphVtx* start_vtx,
    const CvGraphVtx* end_vtx
    );

CvTypeInfo*
cvFindType(const char* type_name);

CvTypeInfo*
cvFirstType(void);

void
cvFlip(
    const CvArr* src,
    CvArr* dst = NULL,
    int flip_mode = 0
    );

void
cvFlushSeqWriter(CvSeqWriter* writer);

void
cvFree_(void* ptr);

void
cvGEMM(
    const CvArr* src1,
    const CvArr* src2,
    double alpha,
    const CvArr* src3,
    double beta,
    CvArr* dst,
    int tABC = 0
    );

CvScalar
cvGet1D(
    const CvArr* arr,
    int idx0
    );

CvScalar
cvGet2D(
    const CvArr* arr,
    int idx0,
    int idx1
    );

CvScalar
cvGet3D(
    const CvArr* arr,
    int idx0,
    int idx1,
    int idx2
    );

CvMat*
cvGetCol(
    const CvArr* arr,
    CvMat* submat,
    int col
    );

CvMat*
cvGetCols(
    const CvArr* arr,
    CvMat* submat,
    int start_col,
    int end_col
    );

CvMat*
cvGetDiag(
    const CvArr* arr,
    CvMat* submat,
    int diag = 0
    );

int
cvGetDims(
    const CvArr* arr,
    int* sizes = NULL
    );

int
cvGetDimSize(
    const CvArr* arr,
    int index
    );

int
cvGetElemType(const CvArr* arr);

int
cvGetErrInfo(
    const char** errcode_desc,
    const char** description,
    const char** filename,
    int* line
    );

int
cvGetErrMode(void);

int
cvGetErrStatus(void);

CvFileNode*
cvGetFileNode(
    CvFileStorage* fs,
    CvFileNode* map,
    const CvStringHashNode* key,
    int create_missing = 0
    );

CvFileNode*
cvGetFileNodeByName(
    const CvFileStorage* fs,
    const CvFileNode* map,
    const char* name
    );

const char*
cvGetFileNodeName(const CvFileNode* node);

CvStringHashNode*
cvGetHashedKey(
    CvFileStorage* fs,
    const char* name,
    int len = -1,
    int create_missing = 0
    );

IplImage*
cvGetImage(
    const CvArr* arr,
    IplImage* image_header
    );

int
cvGetImageCOI(const IplImage* image);

CvRect
cvGetImageROI(const IplImage* image);

CvMat*
cvGetMat(
    const CvArr* arr,
    CvMat* header,
    int* coi = NULL,
    int allowND = 0
    );

CvScalar
cvGetND(
    const CvArr* arr,
    const int* idx
    );

CvSparseNode*
cvGetNextSparseNode(CvSparseMatIterator* mat_iterator);

int
cvGetNumThreads(void);

int
cvGetOptimalDFTSize(int size0);

void
cvGetRawData(
    const CvArr* arr,
    uchar** data,
    int* step = NULL,
    CvSize* roi_size = NULL
    );

double
cvGetReal1D(
    const CvArr* arr,
    int idx0
    );

double
cvGetReal2D(
    const CvArr* arr,
    int idx0,
    int idx1
    );

double
cvGetReal3D(
    const CvArr* arr,
    int idx0,
    int idx1,
    int idx2
    );

double
cvGetRealND(
    const CvArr* arr,
    const int* idx
    );

CvFileNode*
cvGetRootFileNode(
    const CvFileStorage* fs,
    int stream_index = 0
    );

CvMat*
cvGetRow(
    const CvArr* arr,
    CvMat* submat,
    int row
    );

CvMat*
cvGetRows(
    const CvArr* arr,
    CvMat* submat,
    int start_row,
    int end_row,
    int delta_row = 1
    );

schar*
cvGetSeqElem(
    const CvSeq* seq,
    int index
    );

int
cvGetSeqReaderPos(CvSeqReader* reader);

CvSetElem*
cvGetSetElem(
    const CvSet* set_header,
    int idx
    );

CvSize
cvGetSize(const CvArr* arr);

CvMat*
cvGetSubRect(
    const CvArr* arr,
    CvMat* submat,
    CvRect rect
    );

int
cvGetThreadNum(void);

int64
cvGetTickCount(void);

double
cvGetTickFrequency(void);

int
cvGraphAddEdge(
    CvGraph* graph,
    int start_idx,
    int end_idx,
    const CvGraphEdge* edge = NULL,
    CvGraphEdge** inserted_edge = NULL
    );

int
cvGraphAddEdgeByPtr(
    CvGraph* graph,
    CvGraphVtx* start_vtx,
    CvGraphVtx* end_vtx,
    const CvGraphEdge* edge = NULL,
    CvGraphEdge** inserted_edge = NULL
    );

int
cvGraphAddVtx(
    CvGraph* graph,
    const CvGraphVtx* vtx = NULL,
    CvGraphVtx** inserted_vtx = NULL
    );

void
cvGraphRemoveEdge(
    CvGraph* graph,
    int start_idx,
    int end_idx
    );

void
cvGraphRemoveEdgeByPtr(
    CvGraph* graph,
    CvGraphVtx* start_vtx,
    CvGraphVtx* end_vtx
    );

int
cvGraphRemoveVtx(
    CvGraph* graph,
    int index
    );

int
cvGraphRemoveVtxByPtr(
    CvGraph* graph,
    CvGraphVtx* vtx
    );

int
cvGraphVtxDegree(
    const CvGraph* graph,
    int vtx_idx
    );

int
cvGraphVtxDegreeByPtr(
    const CvGraph* graph,
    const CvGraphVtx* vtx
    );

int
cvGuiBoxReport(
    int status,
    const char* func_name,
    const char* err_msg,
    const char* file_name,
    int line,
    void* userdata
    );

int
cvIncRefData(CvArr* arr);

IplImage*
cvInitImageHeader(
    IplImage* image,
    CvSize size,
    int depth,
    int channels,
    int origin = 0,
    int align = 4
    );

CvMat*
cvInitMatHeader(
    CvMat* mat,
    int rows,
    int cols,
    int type,
    void* data = NULL,
    int step = 0x7fffffff
    );

CvMatND*
cvInitMatNDHeader(
    CvMatND* mat,
    int dims,
    const int* sizes,
    int type,
    void* data = NULL
    );

int
cvInitNArrayIterator(
    int count,
    CvArr** arrs,
    const CvArr* mask,
    CvMatND* stubs,
    CvNArrayIterator* array_iterator,
    int flags = 0
    );

CvSparseNode*
cvInitSparseMatIterator(
    const CvSparseMat* mat,
    CvSparseMatIterator* mat_iterator
    );

void
cvInitTreeNodeIterator(
    CvTreeNodeIterator* tree_iterator,
    const void* first,
    int max_level
    );

void
cvInRange(
    const CvArr* src,
    const CvArr* lower,
    const CvArr* upper,
    CvArr* dst
    );

void
cvInRangeS(
    const CvArr* src,
    CvScalar lower,
    CvScalar upper,
    CvArr* dst
    );

void
cvInsertNodeIntoTree(
    void* node,
    void* parent,
    void* frame
    );

double
cvInvert(
    const CvArr* src,
    CvArr* dst,
    int method = 0
    );

int
cvKMeans2(
    const CvArr* samples,
    int cluster_count,
    CvArr* labels,
    CvTermCriteria termcrit,
    int attempts = 1,
    CvRNG* rng = 0,
    int flags = 0,
    CvArr* _centers = 0,
    double* compactness = 0
    );

void*
cvLoad(
    const char* filename,
    CvMemStorage* memstorage = NULL,
    const char* name = NULL,
    const char** real_name = NULL
    );

void
cvLog(
    const CvArr* src,
    CvArr* dst
    );

void
cvLUT(
    const CvArr* src,
    CvArr* dst,
    const CvArr* lut
    );

double
cvMahalanobis(
    const CvArr* vec1,
    const CvArr* vec2,
    const CvArr* mat
    );

CvSeq*
cvMakeSeqHeaderForArray(
    int seq_type,
    int header_size,
    int elem_size,
    void* elements,
    int total,
    CvSeq* seq,
    CvSeqBlock* block
    );

void
cvMax(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst
    );

void
cvMaxS(
    const CvArr* src,
    double value,
    CvArr* dst
    );

void*
cvMemStorageAlloc(
    CvMemStorage* storage,
    size_t size
    );

CvString
cvMemStorageAllocString(
    CvMemStorage* storage,
    const char* ptr,
    int len = -1
    );

void
cvMerge(
    const CvArr* src0,
    const CvArr* src1,
    const CvArr* src2,
    const CvArr* src3,
    CvArr* dst
    );

void
cvMin(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst
    );

void
cvMinMaxLoc(
    const CvArr* arr,
    double* min_val,
    double* max_val,
    CvPoint* min_loc = NULL,
    CvPoint* max_loc = NULL,
    const CvArr* mask = NULL
    );

void
cvMinS(
    const CvArr* src,
    double value,
    CvArr* dst
    );

void
cvMixChannels(
    const CvArr** src,
    int src_count,
    CvArr** dst,
    int dst_count,
    const int* from_to,
    int pair_count
    );

void
cvMul(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    double scale = 1
    );

void
cvMulSpectrums(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    int flags
    );

void
cvMulTransposed(
    const CvArr* src,
    CvArr* dst,
    int order,
    const CvArr* delta = NULL,
    double scale = 1.
    );

int
cvNextGraphItem(CvGraphScanner* scanner);

int
cvNextNArraySlice(CvNArrayIterator* array_iterator);

void*
cvNextTreeNode(CvTreeNodeIterator* tree_iterator);

double
cvNorm(
    const CvArr* arr1,
    const CvArr* arr2 = NULL,
    int norm_type = 4,
    const CvArr* mask = NULL
    );

void
cvNormalize(
    const CvArr* src,
    CvArr* dst,
    double a = 1.,
    double b = 0.,
    int norm_type = 4,
    const CvArr* mask = NULL
    );

void
cvNot(
    const CvArr* src,
    CvArr* dst
    );

int
cvNulDevReport(
    int status,
    const char* func_name,
    const char* err_msg,
    const char* file_name,
    int line,
    void* userdata
    );

CvFileStorage*
cvOpenFileStorage(
    const char* filename,
    CvMemStorage* memstorage,
    int flags,
    const char* encoding = NULL
    );

void
cvOr(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    const CvArr* mask = NULL
    );

void
cvOrS(
    const CvArr* src,
    CvScalar value,
    CvArr* dst,
    const CvArr* mask = NULL
    );

void
cvPerspectiveTransform(
    const CvArr* src,
    CvArr* dst,
    const CvMat* mat
    );

void
cvPolarToCart(
    const CvArr* magnitude,
    const CvArr* angle,
    CvArr* x,
    CvArr* y,
    int angle_in_degrees = 0
    );

void
cvPow(
    const CvArr* src,
    CvArr* dst,
    double power
    );

void*
cvPrevTreeNode(CvTreeNodeIterator* tree_iterator);

void
cvProjectPCA(
    const CvArr* data,
    const CvArr* mean,
    const CvArr* eigenvects,
    CvArr* result
    );

uchar*
cvPtr1D(
    const CvArr* arr,
    int idx0,
    int* type = NULL
    );

uchar*
cvPtr2D(
    const CvArr* arr,
    int idx0,
    int idx1,
    int* type = NULL
    );

uchar*
cvPtr3D(
    const CvArr* arr,
    int idx0,
    int idx1,
    int idx2,
    int* type = NULL
    );

uchar*
cvPtrND(
    const CvArr* arr,
    const int* idx,
    int* type = NULL,
    int create_node = 1,
    unsigned* precalc_hashval = NULL
    );

void
cvRandArr(
    CvRNG* rng,
    CvArr* arr,
    int dist_type,
    CvScalar param1,
    CvScalar param2
    );

void
cvRandShuffle(
    CvArr* mat,
    CvRNG* rng,
    double iter_factor = 1.
    );

CvArr*
cvRange(
    CvArr* mat,
    double start,
    double end
    );

void
cvRawDataToScalar(
    const void* data,
    int type,
    CvScalar* scalar
    );

void*
cvRead(
    CvFileStorage* fs,
    CvFileNode* node,
    CvAttrList* attributes = NULL
    );

void*
cvReadByName(
    CvFileStorage* fs,
    const CvFileNode* map,
    const char* name,
    CvAttrList* attributes = NULL
    );

int
cvReadInt(
    const CvFileNode* node,
    int default_value = 0
    );

int
cvReadIntByName(
    const CvFileStorage* fs,
    const CvFileNode* map,
    const char* name,
    int default_value = 0
    );

void
cvReadRawData(
    const CvFileStorage* fs,
    const CvFileNode* src,
    void* dst,
    const char* dt
    );

void
cvReadRawDataSlice(
    const CvFileStorage* fs,
    CvSeqReader* reader,
    int count,
    void* dst,
    const char* dt
    );

double
cvReadReal(
    const CvFileNode* node,
    double default_value = 0.
    );

double
cvReadRealByName(
    const CvFileStorage* fs,
    const CvFileNode* map,
    const char* name,
    double default_value = 0.
    );

const char*
cvReadString(
    const CvFileNode* node,
    const char* default_value = NULL
    );

const char*
cvReadStringByName(
    const CvFileStorage* fs,
    const CvFileNode* map,
    const char* name,
    const char* default_value = NULL
    );

CvErrorCallback
cvRedirectError(
    CvErrorCallback error_handler,
    void* userdata = NULL,
    void** prev_userdata = NULL
    );

void
cvReduce(
    const CvArr* src,
    CvArr* dst,
    int dim = -1,
    int op = 0
    );

void
cvRegisterType(const CvTypeInfo* info);

void
cvRelease(void** struct_ptr);

void
cvReleaseData(CvArr* arr);

void
cvReleaseFileStorage(CvFileStorage** fs);

void
cvReleaseGraphScanner(CvGraphScanner** scanner);

void
cvReleaseImage(IplImage** image);

void
cvReleaseImageHeader(IplImage** image);

void
cvReleaseMat(CvMat** mat);

void
cvReleaseMatND(CvMatND** mat);

void
cvReleaseMemStorage(CvMemStorage** storage);

void
cvReleaseSparseMat(CvSparseMat** mat);

void
cvRemoveNodeFromTree(
    void* node,
    void* frame
    );

void
cvRepeat(
    const CvArr* src,
    CvArr* dst
    );

void
cvResetImageROI(IplImage* image);

CvMat*
cvReshape(
    const CvArr* arr,
    CvMat* header,
    int new_cn,
    int new_rows = 0
    );

CvArr*
cvReshapeMatND(
    const CvArr* arr,
    int sizeof_header,
    CvArr* header,
    int new_cn,
    int new_dims,
    int* new_sizes
    );

void
cvRestoreMemStoragePos(
    CvMemStorage* storage,
    CvMemStoragePos* pos
    );

void
cvSave(
    const char* filename,
    const void* struct_ptr,
    const char* name = NULL,
    const char* comment = NULL,
    CvAttrList attributes = cvAttrList()
    );

void
cvSaveMemStoragePos(
    const CvMemStorage* storage,
    CvMemStoragePos* pos
    );

void
cvScalarToRawData(
    const CvScalar* scalar,
    void* data,
    int type,
    int extend_to_12 = 0
    );

void
cvScaleAdd(
    const CvArr* src1,
    CvScalar scale,
    const CvArr* src2,
    CvArr* dst
    );

int
cvSeqElemIdx(
    const CvSeq* seq,
    const void* element,
    CvSeqBlock** block = NULL
    );

schar*
cvSeqInsert(
    CvSeq* seq,
    int before_index,
    const void* element = NULL
    );

void
cvSeqInsertSlice(
    CvSeq* seq,
    int before_index,
    const CvArr* from_arr
    );

void
cvSeqInvert(CvSeq* seq);

int
cvSeqPartition(
    const CvSeq* seq,
    CvMemStorage* storage,
    CvSeq** labels,
    CvCmpFunc is_equal,
    void* userdata
    );

void
cvSeqPop(
    CvSeq* seq,
    void* element = NULL
    );

void
cvSeqPopFront(
    CvSeq* seq,
    void* element = NULL
    );

void
cvSeqPopMulti(
    CvSeq* seq,
    void* elements,
    int count,
    int in_front = 0
    );

schar*
cvSeqPush(
    CvSeq* seq,
    const void* element = NULL
    );

schar*
cvSeqPushFront(
    CvSeq* seq,
    const void* element = NULL
    );

void
cvSeqPushMulti(
    CvSeq* seq,
    const void* elements,
    int count,
    int in_front = 0
    );

void
cvSeqRemove(
    CvSeq* seq,
    int index
    );

void
cvSeqRemoveSlice(
    CvSeq* seq,
    CvSlice slice
    );

schar*
cvSeqSearch(
    CvSeq* seq,
    const void* elem,
    CvCmpFunc func,
    int is_sorted,
    int* elem_idx,
    void* userdata = NULL
    );

CvSeq*
cvSeqSlice(
    const CvSeq* seq,
    CvSlice slice,
    CvMemStorage* storage = NULL,
    int copy_data = 0
    );

void
cvSeqSort(
    CvSeq* seq,
    CvCmpFunc func,
    void* userdata = NULL
    );

void
cvSet(
    CvArr* arr,
    CvScalar value,
    const CvArr* mask = NULL
    );

void
cvSet1D(
    CvArr* arr,
    int idx0,
    CvScalar value
    );

void
cvSet2D(
    CvArr* arr,
    int idx0,
    int idx1,
    CvScalar value
    );

void
cvSet3D(
    CvArr* arr,
    int idx0,
    int idx1,
    int idx2,
    CvScalar value
    );

int
cvSetAdd(
    CvSet* set_header,
    CvSetElem* elem = NULL,
    CvSetElem** inserted_elem = NULL
    );

void
cvSetData(
    CvArr* arr,
    void* data,
    int step
    );

int
cvSetErrMode(int mode);

void
cvSetErrStatus(int status);

void
cvSetIdentity(
    CvArr* mat,
    CvScalar value = cvRealScalar(1)
    );

void
cvSetImageCOI(
    IplImage* image,
    int coi
    );

void
cvSetImageROI(
    IplImage* image,
    CvRect rect
    );

void
cvSetIPLAllocators(
    Cv_iplCreateImageHeader create_header,
    Cv_iplAllocateImageData allocate_data,
    Cv_iplDeallocate deallocate,
    Cv_iplCreateROI create_roi,
    Cv_iplCloneImage clone_image
    );

void
cvSetND(
    CvArr* arr,
    const int* idx,
    CvScalar value
    );

CvSetElem*
cvSetNew(CvSet* set_header);

void
cvSetNumThreads(int threads = 0);

void
cvSetReal1D(
    CvArr* arr,
    int idx0,
    double value
    );

void
cvSetReal2D(
    CvArr* arr,
    int idx0,
    int idx1,
    double value
    );

void
cvSetReal3D(
    CvArr* arr,
    int idx0,
    int idx1,
    int idx2,
    double value
    );

void
cvSetRealND(
    CvArr* arr,
    const int* idx,
    double value
    );

void
cvSetRemove(
    CvSet* set_header,
    int index
    );

void
cvSetRemoveByPtr(
    CvSet* set_header,
    void* elem
    );

void
cvSetSeqBlockSize(
    CvSeq* seq,
    int delta_elems
    );

void
cvSetSeqReaderPos(
    CvSeqReader* reader,
    int index,
    int is_relative = 0
    );

void
cvSetZero(CvArr* arr);

int
cvSliceLength(
    CvSlice slice,
    const CvSeq* seq
    );

int
cvSolve(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    int method = 0
    );

int
cvSolveCubic(
    const CvMat* coeffs,
    CvMat* roots
    );

void
cvSolvePoly(
    const CvMat* coeffs,
    CvMat* roots2,
    int maxiter = 20,
    int fig = 100
    );

void
cvSort(
    const CvArr* src,
    CvArr* dst = NULL,
    CvArr* idxmat = NULL,
    int flags = 0
    );

void
cvSplit(
    const CvArr* src,
    CvArr* dst0,
    CvArr* dst1,
    CvArr* dst2,
    CvArr* dst3
    );

void
cvStartAppendToSeq(
    CvSeq* seq,
    CvSeqWriter* writer
    );

void
cvStartNextStream(CvFileStorage* fs);

void
cvStartReadRawData(
    const CvFileStorage* fs,
    const CvFileNode* src,
    CvSeqReader* reader
    );

void
cvStartReadSeq(
    const CvSeq* seq,
    CvSeqReader* reader,
    int reverse = 0
    );

void
cvStartWriteSeq(
    int seq_flags,
    int header_size,
    int elem_size,
    CvMemStorage* storage,
    CvSeqWriter* writer
    );

void
cvStartWriteStruct(
    CvFileStorage* fs,
    const char* name,
    int struct_flags,
    const char* type_name = NULL,
    CvAttrList attributes = cvAttrList()
    );

int
cvStdErrReport(
    int status,
    const char* func_name,
    const char* err_msg,
    const char* file_name,
    int line,
    void* userdata
    );

void
cvSub(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    const CvArr* mask = NULL
    );

void
cvSubRS(
    const CvArr* src,
    CvScalar value,
    CvArr* dst,
    const CvArr* mask = NULL
    );

void
cvSubS(
    const CvArr* src,
    CvScalar value,
    CvArr* dst,
    const CvArr* mask = NULL
    );

CvScalar
cvSum(const CvArr* arr);

void
cvSVBkSb(
    const CvArr* W,
    const CvArr* U,
    const CvArr* V,
    const CvArr* B,
    CvArr* X,
    int flags
    );

void
cvSVD(
    CvArr* A,
    CvArr* W,
    CvArr* U = NULL,
    CvArr* V = NULL,
    int flags = 0
    );

CvScalar
cvTrace(const CvArr* mat);

void
cvTransform(
    const CvArr* src,
    CvArr* dst,
    const CvMat* transmat,
    const CvMat* shiftvec = NULL
    );

void
cvTranspose(
    const CvArr* src,
    CvArr* dst
    );

CvSeq*
cvTreeToNodeSeq(
    const void* first,
    int header_size,
    CvMemStorage* storage
    );

CvTypeInfo*
cvTypeOf(const void* struct_ptr);

void
cvUnregisterType(const char* type_name);

int
cvUseOptimized(int on_off);

void
cvWrite(
    CvFileStorage* fs,
    const char* name,
    const void* ptr,
    CvAttrList attributes = cvAttrList()
    );

void
cvWriteComment(
    CvFileStorage* fs,
    const char* comment,
    int eol_comment
    );

void
cvWriteFileNode(
    CvFileStorage* fs,
    const char* new_node_name,
    const CvFileNode* node,
    int embed
    );

void
cvWriteInt(
    CvFileStorage* fs,
    const char* name,
    int value
    );

void
cvWriteRawData(
    CvFileStorage* fs,
    const void* src,
    int len,
    const char* dt
    );

void
cvWriteRawDataBase64(
    CvFileStorage* fs,
    const void* src,
    int len,
    const char* dt
    );

void
cvWriteReal(
    CvFileStorage* fs,
    const char* name,
    double value
    );

void
cvWriteString(
    CvFileStorage* fs,
    const char* name,
    const char* str,
    int quote = 0
    );

void
cvXor(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    const CvArr* mask = NULL
    );

void
cvXorS(
    const CvArr* src,
    CvScalar value,
    CvArr* dst,
    const CvArr* mask = NULL
    );

CvAttrList
cvAttrList(
    const char** attr = NULL,
    CvAttrList* next = NULL
    );

CvSparseMat*
cvCreateSparseMat(const cv::SparseMat& m);

int
cvIplDepth(int type);

CvMat
cvMat(
    int rows,
    int cols,
    int type,
    void* data = NULL
    );

double
cvmGet(
    const CvMat* mat,
    int row,
    int col
    );

void
cvmSet(
    CvMat* mat,
    int row,
    int col,
    double value
    );

CvPoint
cvPoint(
    int x,
    int y
    );

CvPoint2D32f
cvPoint2D32f(
    double x,
    double y
    );

CvPoint2D64f
cvPoint2D64f(
    double x,
    double y
    );

CvPoint3D32f
cvPoint3D32f(
    double x,
    double y,
    double z
    );

CvPoint3D64f
cvPoint3D64f(
    double x,
    double y,
    double z
    );

CvPoint
cvPointFrom32f(CvPoint2D32f point);

CvPoint2D32f
cvPointTo32f(CvPoint point);

unsigned
cvRandInt(CvRNG* rng);

double
cvRandReal(CvRNG* rng);

CvScalar
cvRealScalar(double val0);

CvRect
cvRect(
    int x,
    int y,
    int width,
    int height
    );

IplROI
cvRectToROI(
    CvRect rect,
    int coi
    );

CvRNG
cvRNG(int64 seed = -1);

CvRect
cvROIToRect(IplROI roi);

CvScalar
cvScalar(
    double val0,
    double val1 = 0,
    double val2 = 0,
    double val3 = 0
    );

CvScalar
cvScalarAll(double val0123);

CvSize
cvSize(
    int width,
    int height
    );

CvSize2D32f
cvSize2D32f(
    double width,
    double height
    );

CvSlice
cvSlice(
    int start,
    int end
    );

CvTermCriteria
cvTermCriteria(
    int type,
    int max_iter,
    double epsilon
    );

// macros

#define CV_ARE_CNS_EQ( \
    mat1, \
    mat2 \
    )

#define CV_ARE_DEPTHS_EQ( \
    mat1, \
    mat2 \
    )

#define CV_ARE_SIZES_EQ( \
    mat1, \
    mat2 \
    )

#define CV_ARE_TYPES_EQ( \
    mat1, \
    mat2 \
    )

#define CV_ASSERT(Condition)
#define CV_AUTOSTEP
#define CV_AUTO_STEP
#define CV_BACK
#define CV_C
#define CV_CALL(Func)
#define CV_CHECK()
#define CV_CHECK_QUIET
#define CV_CHECK_RANGE
#define CV_CHOLESKY

#define CV_CMP( \
    a, \
    b \
    )

#define CV_CMP_EQ
#define CV_CMP_GE
#define CV_CMP_GT
#define CV_CMP_LE
#define CV_CMP_LT
#define CV_CMP_NE
#define CV_CONTOUR_FIELDS()
#define CV_COVAR_COLS
#define CV_COVAR_NORMAL
#define CV_COVAR_ROWS
#define CV_COVAR_SCALE
#define CV_COVAR_SCRAMBLED
#define CV_COVAR_USE_AVG
#define CV_CURRENT_POINT(reader)
#define CV_DIFF
#define CV_DIFF_C
#define CV_DIFF_L1
#define CV_DIFF_L2
#define CV_DXT_FORWARD
#define CV_DXT_INVERSE
#define CV_DXT_INVERSE_SCALE
#define CV_DXT_INV_SCALE
#define CV_DXT_MUL_CONJ
#define CV_DXT_ROWS
#define CV_DXT_SCALE

#define CV_ERROR( \
    Code, \
    Msg \
    )

#define CV_ErrModeLeaf
#define CV_ErrModeParent
#define CV_ErrModeSilent
#define CV_FRONT
#define CV_FUNCNAME(Name)
#define CV_GEMM_A_T
#define CV_GEMM_B_T
#define CV_GEMM_C_T

#define CV_GET_SEQ_ELEM( \
    elem_type, \
    seq, \
    index \
    )

#define CV_GRAPH
#define CV_GRAPH_ALL_ITEMS
#define CV_GRAPH_ANY_EDGE
#define CV_GRAPH_BACKTRACKING
#define CV_GRAPH_BACK_EDGE
#define CV_GRAPH_CROSS_EDGE
#define CV_GRAPH_EDGE_FIELDS()
#define CV_GRAPH_FIELDS()
#define CV_GRAPH_FLAG_ORIENTED
#define CV_GRAPH_FORWARD_EDGE
#define CV_GRAPH_FORWARD_EDGE_FLAG
#define CV_GRAPH_ITEM_VISITED_FLAG
#define CV_GRAPH_NEW_TREE
#define CV_GRAPH_OVER
#define CV_GRAPH_SEARCH_TREE_NODE_FLAG
#define CV_GRAPH_TREE_EDGE
#define CV_GRAPH_VERTEX
#define CV_GRAPH_VERTEX_FIELDS()
#define CV_HIST_ARRAY
#define CV_HIST_HAS_RANGES(hist)
#define CV_HIST_MAGIC_VAL
#define CV_HIST_RANGES_FLAG
#define CV_HIST_SPARSE
#define CV_HIST_TREE
#define CV_HIST_UNIFORM
#define CV_HIST_UNIFORM_FLAG
#define CV_IABS(a)

#define CV_IMAGE_ELEM( \
    image, \
    elemtype, \
    row, \
    col \
    )

#define CV_IMAX( \
    a, \
    b \
    )

#define CV_IMIN( \
    a, \
    b \
    )

#define CV_IS_GRAPH(seq)
#define CV_IS_GRAPH_EDGE_VISITED(edge)
#define CV_IS_GRAPH_ORIENTED(seq)
#define CV_IS_GRAPH_VERTEX_VISITED(vtx)
#define CV_IS_HIST(hist)
#define CV_IS_IMAGE(img)
#define CV_IS_IMAGE_HDR(img)
#define CV_IS_MASK_ARR(mat)
#define CV_IS_MAT(mat)
#define CV_IS_MATND(mat)
#define CV_IS_MATND_HDR(mat)
#define CV_IS_MAT_CONST(mat)
#define CV_IS_MAT_HDR(mat)
#define CV_IS_MAT_HDR_Z(mat)
#define CV_IS_SEQ(seq)
#define CV_IS_SEQ_CHAIN(seq)
#define CV_IS_SEQ_CHAIN_CONTOUR(seq)
#define CV_IS_SEQ_CLOSED(seq)
#define CV_IS_SEQ_CONTOUR(seq)
#define CV_IS_SEQ_CONVEX(seq)
#define CV_IS_SEQ_CURVE(seq)
#define CV_IS_SEQ_HOLE(seq)
#define CV_IS_SEQ_INDEX(seq)
#define CV_IS_SEQ_POINT_SET(seq)
#define CV_IS_SEQ_POINT_SUBSET(seq)
#define CV_IS_SEQ_POLYGON(seq)
#define CV_IS_SEQ_POLYGON_TREE(seq)
#define CV_IS_SEQ_POLYLINE(seq)
#define CV_IS_SEQ_SIMPLE(seq)
#define CV_IS_SET(set)
#define CV_IS_SET_ELEM(ptr)
#define CV_IS_SPARSE_HIST(hist)
#define CV_IS_SPARSE_MAT(mat)
#define CV_IS_SPARSE_MAT_HDR(mat)
#define CV_IS_STORAGE(storage)
#define CV_IS_SUBDIV2D(seq)
#define CV_IS_UNIFORM_HIST(hist)
#define CV_KMEANS_USE_INITIAL_LABELS
#define CV_L1
#define CV_L2
#define CV_LU
#define CV_MAGIC_MASK
#define CV_MATND_MAGIC_VAL

#define CV_MAT_ELEM( \
    mat, \
    elemtype, \
    row, \
    col \
    )

#define CV_MAT_ELEM_PTR( \
    mat, \
    row, \
    col \
    )

#define CV_MAT_ELEM_PTR_FAST( \
    mat, \
    row, \
    col, \
    pix_size \
    )

#define CV_MAT_MAGIC_VAL
#define CV_MAX_ARR
#define CV_MAX_DIM
#define CV_MAX_DIM_HEAP
#define CV_MINMAX

#define CV_NEXT_GRAPH_EDGE( \
    edge, \
    vertex \
    )

#define CV_NEXT_SEQ_ELEM( \
    elem_size, \
    reader \
    )

#define CV_NODE_EMPTY
#define CV_NODE_FLOAT
#define CV_NODE_FLOW
#define CV_NODE_HAS_NAME(flags)

#define CV_NODE_IDX( \
    mat, \
    node \
    )

#define CV_NODE_INT
#define CV_NODE_INTEGER
#define CV_NODE_IS_COLLECTION(flags)
#define CV_NODE_IS_EMPTY(flags)
#define CV_NODE_IS_FLOW(flags)
#define CV_NODE_IS_INT(flags)
#define CV_NODE_IS_MAP(flags)
#define CV_NODE_IS_REAL(flags)
#define CV_NODE_IS_SEQ(flags)
#define CV_NODE_IS_STRING(flags)
#define CV_NODE_IS_USER(flags)
#define CV_NODE_MAP
#define CV_NODE_NAMED
#define CV_NODE_NONE
#define CV_NODE_REAL
#define CV_NODE_REF
#define CV_NODE_SEQ
#define CV_NODE_SEQ_IS_SIMPLE(seq)
#define CV_NODE_SEQ_SIMPLE
#define CV_NODE_STR
#define CV_NODE_STRING
#define CV_NODE_TYPE(flags)
#define CV_NODE_TYPE_MASK
#define CV_NODE_USER

#define CV_NODE_VAL( \
    mat, \
    node \
    )

#define CV_NORMAL
#define CV_NORM_MASK
#define CV_NO_CN_CHECK
#define CV_NO_DEPTH_CHECK
#define CV_NO_SIZE_CHECK
#define CV_ORIENTED_GRAPH
#define CV_PCA_DATA_AS_COL
#define CV_PCA_DATA_AS_ROW
#define CV_PCA_USE_AVG
#define CV_PREV_POINT(reader)

#define CV_PREV_SEQ_ELEM( \
    elem_size, \
    reader \
    )

#define CV_QR
#define CV_RAND_NORMAL
#define CV_RAND_UNI

#define CV_READ_CHAIN_POINT( \
    _pt, \
    reader \
    )

#define CV_READ_EDGE( \
    pt1, \
    pt2, \
    reader \
    )

#define CV_READ_SEQ_ELEM( \
    elem, \
    reader \
    )

#define CV_REDUCE_AVG
#define CV_REDUCE_MAX
#define CV_REDUCE_MIN
#define CV_REDUCE_SUM
#define CV_RELATIVE
#define CV_RELATIVE_C
#define CV_RELATIVE_L1
#define CV_RELATIVE_L2

#define CV_REV_READ_SEQ_ELEM( \
    elem, \
    reader \
    )

#define CV_RNG_COEFF
#define CV_SEQUENCE_FIELDS()
#define CV_SEQ_CHAIN
#define CV_SEQ_CHAIN_CONTOUR
#define CV_SEQ_CONNECTED_COMP
#define CV_SEQ_CONTOUR

#define CV_SEQ_ELEM( \
    seq, \
    elem_type, \
    index \
    )

#define CV_SEQ_ELTYPE(seq)
#define CV_SEQ_ELTYPE_BITS
#define CV_SEQ_ELTYPE_CODE
#define CV_SEQ_ELTYPE_CONNECTED_COMP
#define CV_SEQ_ELTYPE_GENERIC
#define CV_SEQ_ELTYPE_GRAPH_EDGE
#define CV_SEQ_ELTYPE_GRAPH_VERTEX
#define CV_SEQ_ELTYPE_INDEX
#define CV_SEQ_ELTYPE_MASK
#define CV_SEQ_ELTYPE_POINT
#define CV_SEQ_ELTYPE_POINT3D
#define CV_SEQ_ELTYPE_PPOINT
#define CV_SEQ_ELTYPE_PTR
#define CV_SEQ_ELTYPE_TRIAN_ATR
#define CV_SEQ_FLAG_CLOSED
#define CV_SEQ_FLAG_CONVEX
#define CV_SEQ_FLAG_HOLE
#define CV_SEQ_FLAG_SHIFT
#define CV_SEQ_FLAG_SIMPLE
#define CV_SEQ_INDEX
#define CV_SEQ_KIND(seq)
#define CV_SEQ_KIND_BIN_TREE
#define CV_SEQ_KIND_BITS
#define CV_SEQ_KIND_CURVE
#define CV_SEQ_KIND_GENERIC
#define CV_SEQ_KIND_GRAPH
#define CV_SEQ_KIND_MASK
#define CV_SEQ_KIND_SUBDIV2D
#define CV_SEQ_MAGIC_VAL
#define CV_SEQ_POINT3D_SET
#define CV_SEQ_POINT_SET
#define CV_SEQ_POLYGON
#define CV_SEQ_POLYGON_TREE
#define CV_SEQ_POLYLINE
#define CV_SEQ_READER_FIELDS()
#define CV_SEQ_SIMPLE_POLYGON
#define CV_SEQ_WRITER_FIELDS()
#define CV_SET_ELEM_FIELDS(elem_type)
#define CV_SET_ELEM_FREE_FLAG
#define CV_SET_ELEM_IDX_MASK
#define CV_SET_FIELDS()
#define CV_SET_MAGIC_VAL
#define CV_SIGN(a)
#define CV_SORT_ASCENDING
#define CV_SORT_DESCENDING
#define CV_SORT_EVERY_COLUMN
#define CV_SORT_EVERY_ROW
#define CV_SPARSE_MAT_MAGIC_VAL
#define CV_STORAGE_APPEND
#define CV_STORAGE_BASE64
#define CV_STORAGE_FORMAT_AUTO
#define CV_STORAGE_FORMAT_JSON
#define CV_STORAGE_FORMAT_MASK
#define CV_STORAGE_FORMAT_XML
#define CV_STORAGE_FORMAT_YAML
#define CV_STORAGE_MAGIC_VAL
#define CV_STORAGE_MEMORY
#define CV_STORAGE_READ
#define CV_STORAGE_WRITE
#define CV_STORAGE_WRITE_BASE64
#define CV_STORAGE_WRITE_BINARY
#define CV_STORAGE_WRITE_TEXT
#define CV_SVD
#define CV_SVD_MODIFY_A
#define CV_SVD_SYM
#define CV_SVD_U_T
#define CV_SVD_V_T

#define CV_SWAP( \
    a, \
    b, \
    t \
    )

#define CV_TERMCRIT_EPS
#define CV_TERMCRIT_ITER
#define CV_TERMCRIT_NUMBER
#define CV_TREE_NODE_FIELDS(node_type)
#define CV_TURN_ON_IPL_COMPATIBILITY()
#define CV_TYPE_NAME_GRAPH
#define CV_TYPE_NAME_IMAGE
#define CV_TYPE_NAME_MAT
#define CV_TYPE_NAME_MATND
#define CV_TYPE_NAME_SEQ
#define CV_TYPE_NAME_SEQ_TREE
#define CV_TYPE_NAME_SPARSE_MAT
#define CV_WHOLE_ARR
#define CV_WHOLE_SEQ
#define CV_WHOLE_SEQ_END_INDEX

#define CV_WRITE_SEQ_ELEM( \
    elem, \
    writer \
    )

#define CV_WRITE_SEQ_ELEM_VAR( \
    elem_ptr, \
    writer \
    )

#define IPL2CV_DEPTH(depth)
#define IPL_ALIGN_16BYTES
#define IPL_ALIGN_32BYTES
#define IPL_ALIGN_4BYTES
#define IPL_ALIGN_8BYTES
#define IPL_ALIGN_DWORD
#define IPL_ALIGN_QWORD
#define IPL_BORDER_CONSTANT
#define IPL_BORDER_REFLECT
#define IPL_BORDER_REFLECT_101
#define IPL_BORDER_REPLICATE
#define IPL_BORDER_TRANSPARENT
#define IPL_BORDER_WRAP
#define IPL_DATA_ORDER_PIXEL
#define IPL_DATA_ORDER_PLANE
#define IPL_DEPTH_16S
#define IPL_DEPTH_16U
#define IPL_DEPTH_1U
#define IPL_DEPTH_32F
#define IPL_DEPTH_32S
#define IPL_DEPTH_64F
#define IPL_DEPTH_8S
#define IPL_DEPTH_8U
#define IPL_DEPTH_SIGN
#define IPL_IMAGE_DATA
#define IPL_IMAGE_HEADER
#define IPL_IMAGE_MAGIC_VAL
#define IPL_IMAGE_ROI
#define IPL_ORIGIN_BL
#define IPL_ORIGIN_TL

#define OPENCV_ASSERT( \
    expr, \
    func, \
    context \
    )

#define OPENCV_CALL(Func)

#define OPENCV_ERROR( \
    status, \
    func, \
    context \
    )

#define __CV_BEGIN__
#define __CV_END__
#define __CV_EXIT__

#define cvAXPY( \
    A, \
    real_scalar, \
    B, \
    C \
    )

#define cvAbs( \
    src, \
    dst \
    )

#define cvCheckArray

#define cvConvert( \
    src, \
    dst \
    )

#define cvCvtScale
#define cvCvtScaleAbs
#define cvFFT
#define cvFree(ptr)

#define cvGetGraphVtx( \
    graph, \
    idx \
    )

#define cvGetSubArr

#define cvGraphEdgeIdx( \
    graph, \
    edge \
    )

#define cvGraphFindEdge
#define cvGraphFindEdgeByPtr
#define cvGraphGetEdgeCount(graph)
#define cvGraphGetVtxCount(graph)

#define cvGraphVtxIdx( \
    graph, \
    vtx \
    )

#define cvInv
#define cvInvSqrt(value)
#define cvMahalonobis

#define cvMatMul( \
    src1, \
    src2, \
    dst \
    )

#define cvMatMulAdd( \
    src1, \
    src2, \
    src3, \
    dst \
    )

#define cvMatMulAddEx
#define cvMatMulAddS
#define cvMirror

#define cvReshapeND( \
    arr, \
    header, \
    new_cn, \
    new_dims, \
    new_sizes \
    )

#define cvScale
#define cvSqrt(value)
#define cvT
#define cvZero

Detailed Documentation

Enum Values

CV_StsOk

everything is ok

CV_StsBackTrace

pseudo error for back trace

CV_StsError

unknown /unspecified error

CV_StsInternal

internal error (bad state)

CV_StsNoMem

insufficient memory

CV_StsBadArg

function arg/param is bad

CV_StsBadFunc

unsupported function

CV_StsNoConv

iter. didn’t converge

CV_StsAutoTrace

tracing

CV_HeaderIsNull

image header is NULL

CV_BadImageSize

image size is invalid

CV_BadOffset

offset is invalid

CV_BadStep

image step is wrong, this may happen for a non-continuous matrix

CV_BadNumChannels

bad number of channels, for example, some functions accept only single channel matrices

CV_BadDepth

input image depth is not supported by the function

CV_BadOrder

number of dimensions is out of range

CV_BadOrigin

incorrect input origin

CV_BadAlign

incorrect input align

CV_BadCOI

input COI is not supported

CV_BadROISize

incorrect input roi

CV_StsNullPtr

null pointer

CV_StsVecLengthErr

incorrect vector length

CV_StsFilterStructContentErr

incorrect filter structure content

CV_StsKernelStructContentErr

incorrect transform kernel content

CV_StsFilterOffsetErr

incorrect filter offset value

CV_StsBadSize

the input/output structure size is incorrect

CV_StsDivByZero

division by zero

CV_StsInplaceNotSupported

in-place operation is not supported

CV_StsObjectNotFound

request can’t be completed

CV_StsUnmatchedFormats

formats of input/output arrays differ

CV_StsBadFlag

flag is wrong or not supported

CV_StsBadPoint

bad CvPoint

CV_StsBadMask

bad format of mask (neither 8uC1 nor 8sC1)

CV_StsUnmatchedSizes

sizes of input/output structures do not match

CV_StsUnsupportedFormat

the data format/type is not supported by the function

CV_StsOutOfRange

some of parameters are out of range

CV_StsParseError

invalid syntax/structure of the parsed file

CV_StsNotImplemented

the requested function/feature is not implemented

CV_StsBadMemBlock

an allocated block has been corrupted

CV_StsAssert

assertion failed

CV_GpuNotSupported

no CUDA support

CV_GpuApiCallError

GPU API call error

CV_OpenGlNotSupported

no OpenGL support

CV_OpenGlApiCallError

OpenGL API call error

CV_OpenCLApiCallError

OpenCL API call error

CV_OpenCLInitError

OpenCL initialization error

Typedefs

typedef int (*CvCmpFunc)(
    const void *a,
    const void *b,
    void *userdata
    )

a < b ? -1 : a > b ? 1 : 0

typedef struct CvFileStorage CvFileStorage

“black box” representation of the file storage associated with a file on disk.

Several functions that are described below take CvFileStorage* as inputs and allow the user to save or to load hierarchical collections that consist of scalar values, standard CXCore objects (such as matrices, sequences, graphs), and user-defined objects.

OpenCV can read and write data in XML (http://www.w3c.org/XML), YAML (http://www.yaml.org) or JSON (http://www.json.org/) formats. Below is an example of 3x3 floating-point identity matrix A, stored in XML and YAML files using CXCore functions: XML:

<?xml version="1.0">
<opencv_storage>
<A type_id="opencv-matrix">
  <rows>3</rows>
  <cols>3</cols>
  <dt>f</dt>
  <data>1. 0. 0. 0. 1. 0. 0. 0. 1.</data>
</A>
</opencv_storage>

YAML:

%YAML:1.0
A: !!opencv-matrix
  rows: 3
  cols: 3
  dt: f
  data: [ 1., 0., 0., 0., 1., 0., 0., 0., 1.]

As it can be seen from the examples, XML uses nested tags to represent hierarchy, while YAML uses indentation for that purpose (similar to the Python programming language).

The same functions can read and write data in both formats; the particular format is determined by the extension of the opened file, “.xml” for XML files, “.yml” or “.yaml” for YAML and “.json” for JSON.

typedef void CvArr

This is the “metatype” used only as a function parameter.

It denotes that the function accepts arrays of multiple types, such as IplImage*, CvMat* or even CvSeq* sometimes. The particular array type is determined at runtime by analyzing the first 4 bytes of the header. In C++ interface the role of CvArr is played by InputArray and OutputArray.

Global Functions

void
cvAbsDiff(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst
    )

dst(x,y,c) = abs(src1(x,y,c) - src2(x,y,c))

void
cvAbsDiffS(
    const CvArr* src,
    CvArr* dst,
    CvScalar value
    )

dst(x,y,c) = abs(src(x,y,c) - value(c))

void
cvAdd(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    const CvArr* mask = NULL
    )

dst(mask) = src1(mask) + src2(mask)

void
cvAddS(
    const CvArr* src,
    CvScalar value,
    CvArr* dst,
    const CvArr* mask = NULL
    )

dst(mask) = src(mask) + value

void
cvAddWeighted(
    const CvArr* src1,
    double alpha,
    const CvArr* src2,
    double beta,
    double gamma,
    CvArr* dst
    )

dst = src1 * alpha + src2 * beta + gamma

void*
cvAlloc(size_t size)

malloc wrapper. If there is no enough memory, the function (as well as other OpenCV functions that call cvAlloc) raises an error.

void
cvAnd(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    const CvArr* mask = NULL
    )

dst(idx) = src1(idx) & src2(idx)

void
cvAndS(
    const CvArr* src,
    CvScalar value,
    CvArr* dst,
    const CvArr* mask = NULL
    )

dst(idx) = src(idx) & value

const char*
cvAttrValue(
    const CvAttrList* attr,
    const char* attr_name
    )

returns attribute value or 0 (NULL) if there is no such attribute

CvScalar
cvAvg(
    const CvArr* arr,
    const CvArr* mask = NULL
    )

Calculates mean value of array elements

void
cvAvgSdv(
    const CvArr* arr,
    CvScalar* mean,
    CvScalar* std_dev,
    const CvArr* mask = NULL
    )

Calculates mean and standard deviation of pixel values

void
cvCalcCovarMatrix(
    const CvArr** vects,
    int count,
    CvArr* cov_mat,
    CvArr* avg,
    int flags
    )

Calculates covariation matrix for a set of vectors

See also:

flags

void
cvCartToPolar(
    const CvArr* x,
    const CvArr* y,
    CvArr* magnitude,
    CvArr* angle = NULL,
    int angle_in_degrees = 0
    )

Does cartesian->polar coordinates conversion. Either of output components (magnitude or angle) is optional

float
cvCbrt(float value)

Fast cubic root calculation

int
cvCheckArr(
    const CvArr* arr,
    int flags = 0,
    double min_val = 0,
    double max_val = 0
    )

Checks array values for NaNs, Infs or simply for too large numbers (if CV_CHECK_RANGE is set). If CV_CHECK_QUIET is set, no runtime errors is raised (function returns zero value in case of “bad” values). Otherwise cvError is called

CvTermCriteria
cvCheckTermCriteria(
    CvTermCriteria criteria,
    double default_eps,
    int default_max_iters
    )

checks termination criteria validity and sets eps to default_eps (if it is not set), max_iter to default_max_iters (if it is not set)

void
cvClearGraph(CvGraph* graph)

Remove all vertices and edges from the graph

void
cvClearMemStorage(CvMemStorage* storage)

Clears memory storage. This is the only way(!!!) (besides cvRestoreMemStoragePos) to reuse memory allocated for the storage - cvClearSeq,cvClearSet … do not free any memory. A child storage returns all the blocks to the parent when it is cleared

void
cvClearND(
    CvArr* arr,
    const int* idx
    )

clears element of ND dense array, in case of sparse arrays it deletes the specified node

void
cvClearSeq(CvSeq* seq)

Removes all the elements from the sequence. The freed memory can be reused later only by the same sequence unless cvClearMemStorage or cvRestoreMemStoragePos is called

void
cvClearSet(CvSet* set_header)

Removes all the elements from the set

void*
cvClone(const void* struct_ptr)

Makes a clone of an object.

The function finds the type of a given object and calls clone with the passed object. Of course, if you know the object type, for example, struct_ptr is CvMat*, it is faster to call the specific function, like cvCloneMat.

Parameters:

struct_ptr The object to clone
CvGraph*
cvCloneGraph(
    const CvGraph* graph,
    CvMemStorage* storage
    )

Creates a copy of graph

IplImage*
cvCloneImage(const IplImage* image)

Creates a copy of IPL image (widthStep may differ)

CvMat*
cvCloneMat(const CvMat* mat)

Creates an exact copy of the input matrix (except, may be, step value)

CvMatND*
cvCloneMatND(const CvMatND* mat)

Creates a copy of CvMatND (except, may be, steps)

CvSparseMat*
cvCloneSparseMat(const CvSparseMat* mat)

Creates a copy of CvSparseMat (except, may be, zero items)

void
cvCmp(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    int cmp_op
    )

The comparison operation support single-channel arrays only. Destination image should be 8uC1 or 8sC1 dst(idx) = src1(idx) cmp_op src2(idx)

void
cvCmpS(
    const CvArr* src,
    double value,
    CvArr* dst,
    int cmp_op
    )

dst(idx) = src1(idx) cmp_op value

void
cvCompleteSymm(
    CvMat* matrix,
    int LtoR = 0
    )

Completes the symmetric matrix from the lower (LtoR=0) or from the upper (LtoR!=0) part

void
cvConvertScale(
    const CvArr* src,
    CvArr* dst,
    double scale = 1,
    double shift = 0
    )

Converts one array to another with optional linear transformation.

The function has several different purposes, and thus has several different names. It copies one array to another with optional scaling, which is performed first, and/or optional type conversion, performed after:

\[\texttt{dst} (I) = \texttt{scale} \texttt{src} (I) + ( \texttt{shift} _0, \texttt{shift} _1,...)\]

All the channels of multi-channel arrays are processed independently.

The type of conversion is done with rounding and saturation, that is if the result of scaling + conversion can not be represented exactly by a value of the destination array element type, it is set to the nearest representable value on the real axis.

Parameters:

src Source array
dst Destination array
scale Scale factor
shift Value added to the scaled source array elements
void
cvConvertScaleAbs(
    const CvArr* src,
    CvArr* dst,
    double scale = 1,
    double shift = 0
    )

Performs linear transformation on every source array element, stores absolute value of the result: dst(x,y,c) = abs(scale*src(x,y,c)+shift). destination array must have 8u type. In other cases one may use cvConvertScale + cvAbsDiffS

void
cvCopy(
    const CvArr* src,
    CvArr* dst,
    const CvArr* mask = NULL
    )

Copies one array to another.

The function copies selected elements from an input array to an output array:

\[\texttt{dst} (I)= \texttt{src} (I) \quad \text{if} \quad \texttt{mask} (I) \ne 0.\]

If any of the passed arrays is of IplImage type, then its ROI and COI fields are used. Both arrays must have the same type, the same number of dimensions, and the same size. The function can also copy sparse arrays (mask is not supported in this case).

Parameters:

src The source array
dst The destination array
mask Operation mask, 8-bit single channel array; specifies elements of the destination array to be changed
int
cvCountNonZero(const CvArr* arr)

Calculates number of non-zero pixels

CvMemStorage*
cvCreateChildMemStorage(CvMemStorage* parent)

Creates a memory storage that will borrow memory blocks from parent storage

void
cvCreateData(CvArr* arr)

Allocates array data.

The function allocates image, matrix or multi-dimensional dense array data. Note that in the case of matrix types OpenCV allocation functions are used. In the case of IplImage they are used unless CV_TURN_ON_IPL_COMPATIBILITY() has been called before. In the latter case IPL functions are used to allocate the data.

Parameters:

arr Array header
CvGraph*
cvCreateGraph(
    int graph_flags,
    int header_size,
    int vtx_size,
    int edge_size,
    CvMemStorage* storage
    )

Creates new graph

CvGraphScanner*
cvCreateGraphScanner(
    CvGraph* graph,
    CvGraphVtx* vtx = NULL,
    int mask = -1
    )

Creates new graph scanner.

IplImage*
cvCreateImage(
    CvSize size,
    int depth,
    int channels
    )

Creates an image header and allocates the image data.

This function call is equivalent to the following code:

header = cvCreateImageHeader(size, depth, channels);
cvCreateData(header);

Parameters:

size Image width and height
depth Bit depth of image elements. See IplImage for valid depths.
channels Number of channels per pixel. See IplImage for details. This function only creates images with interleaved channels.
IplImage*
cvCreateImageHeader(
    CvSize size,
    int depth,
    int channels
    )

Creates an image header but does not allocate the image data.

Parameters:

size Image width and height
depth Image depth (see cvCreateImage )
channels Number of channels (see cvCreateImage )
CvMat*
cvCreateMat(
    int rows,
    int cols,
    int type
    )

Creates a matrix header and allocates the matrix data.

The function call is equivalent to the following code:

CvMat* mat = cvCreateMatHeader(rows, cols, type);
cvCreateData(mat);

Parameters:

rows Number of rows in the matrix
cols Number of columns in the matrix
type The type of the matrix elements in the form CV_<bit depth><S|U|F>C<number of channels> , where S=signed, U=unsigned, F=float. For example, CV _ 8UC1 means the elements are 8-bit unsigned and the there is 1 channel, and CV _ 32SC2 means the elements are 32-bit signed and there are 2 channels.
CvMat*
cvCreateMatHeader(
    int rows,
    int cols,
    int type
    )

Creates a matrix header but does not allocate the matrix data.

The function allocates a new matrix header and returns a pointer to it. The matrix data can then be allocated using cvCreateData or set explicitly to user-allocated data via cvSetData.

Parameters:

rows Number of rows in the matrix
cols Number of columns in the matrix
type Type of the matrix elements, see cvCreateMat
CvMatND*
cvCreateMatND(
    int dims,
    const int* sizes,
    int type
    )

Creates the header and allocates the data for a multi-dimensional dense array.

This function call is equivalent to the following code:

CvMatND* mat = cvCreateMatNDHeader(dims, sizes, type);
cvCreateData(mat);

Parameters:

dims Number of array dimensions. This must not exceed CV_MAX_DIM (32 by default, but can be changed at build time).
sizes Array of dimension sizes.
type Type of array elements, see cvCreateMat .
CvMatND*
cvCreateMatNDHeader(
    int dims,
    const int* sizes,
    int type
    )

Creates a new matrix header but does not allocate the matrix data.

The function allocates a header for a multi-dimensional dense array. The array data can further be allocated using cvCreateData or set explicitly to user-allocated data via cvSetData.

Parameters:

dims Number of array dimensions
sizes Array of dimension sizes
type Type of array elements, see cvCreateMat
CvMemStorage*
cvCreateMemStorage(int block_size = 0)

Creates new memory storage. block_size == 0 means that default, somewhat optimal size, is used (currently, it is 64K)

CvSeq*
cvCreateSeq(
    int seq_flags,
    size_t header_size,
    size_t elem_size,
    CvMemStorage* storage
    )

Creates new empty sequence that will reside in the specified storage

CvSet*
cvCreateSet(
    int set_flags,
    int header_size,
    int elem_size,
    CvMemStorage* storage
    )

Creates a new set

CvSparseMat*
cvCreateSparseMat(
    int dims,
    const int* sizes,
    int type
    )

Creates sparse array.

The function allocates a multi-dimensional sparse array. Initially the array contain no elements, that is PtrND and other related functions will return 0 for every index.

Parameters:

dims Number of array dimensions. In contrast to the dense matrix, the number of dimensions is practically unlimited (up to \(2^{16}\)).
sizes Array of dimension sizes
type Type of array elements. The same as for CvMat
void
cvCrossProduct(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst
    )

Calculates the cross product of two 3D vectors.

The function calculates the cross product of two 3D vectors:

\[\texttt{dst} = \texttt{src1} \times \texttt{src2}\]

or:

\[\begin{split}\begin{array}{l} \texttt{dst} _1 = \texttt{src1} _2 \texttt{src2} _3 - \texttt{src1} _3 \texttt{src2} _2 \\ \texttt{dst} _2 = \texttt{src1} _3 \texttt{src2} _1 - \texttt{src1} _1 \texttt{src2} _3 \\ \texttt{dst} _3 = \texttt{src1} _1 \texttt{src2} _2 - \texttt{src1} _2 \texttt{src2} _1 \end{array}\end{split}\]

Parameters:

src1 The first source vector
src2 The second source vector
dst The destination vector
void*
cvCvtSeqToArray(
    const CvSeq* seq,
    void* elements,
    CvSlice slice = CV_WHOLE_SEQ
    )

Copies sequence content to a continuous piece of memory

void
cvDCT(
    const CvArr* src,
    CvArr* dst,
    int flags
    )

Discrete Cosine Transform

See also:

core_c_DftFlags “flags”

void
cvDecRefData(CvArr* arr)

Decrements an array data reference counter.

The function decrements the data reference counter in a CvMat or CvMatND if the reference counter

pointer is not NULL. If the counter reaches zero, the data is deallocated. In the current implementation the reference counter is not NULL only if the data was allocated using the cvCreateData function. The counter will be NULL in other cases such as: external data was assigned to the header using cvSetData, header is part of a larger matrix or image, or the header was converted from an image or n-dimensional matrix header.

Parameters:

arr Pointer to an array header
double
cvDet(const CvArr* mat)

Calculates determinant of input matrix

void
cvDFT(
    const CvArr* src,
    CvArr* dst,
    int flags,
    int nonzero_rows = 0
    )

Discrete Fourier Transform: complex->complex, real->ccs (forward), ccs->real (inverse)

See also:

core_c_DftFlags “flags”

void
cvDiv(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    double scale = 1
    )

element-wise division/inversion with scaling: dst(idx) = src1(idx) * scale / src2(idx) or dst(idx) = scale / src2(idx) if src1 == 0

double
cvDotProduct(
    const CvArr* src1,
    const CvArr* src2
    )

Calculates the dot product of two arrays in Euclidean metrics.

The function calculates and returns the Euclidean dot product of two arrays.

\[src1 \bullet src2 = \sum _I ( \texttt{src1} (I) \texttt{src2} (I))\]

In the case of multiple channel arrays, the results for all channels are accumulated. In particular, cvDotProduct(a,a) where a is a complex vector, will return \(||\texttt{a}||^2\). The function can process multi-dimensional arrays, row by row, layer by layer, and so on.

Parameters:

src1 The first source array
src2 The second source array
void
cvEigenVV(
    CvArr* mat,
    CvArr* evects,
    CvArr* evals,
    double eps = 0,
    int lowindex = -1,
    int highindex = -1
    )

Finds eigen values and vectors of a symmetric matrix

CvSeq*
cvEndWriteSeq(CvSeqWriter* writer)

Closes sequence writer, updates sequence header and returns pointer to the resultant sequence (which may be useful if the sequence was created using cvStartWriteSeq))

void
cvEndWriteStruct(CvFileStorage* fs)

Finishes writing to a file node collection.

Parameters:

fs File storage

See also:

cvStartWriteStruct.

void
cvError(
    int status,
    const char* func_name,
    const char* err_msg,
    const char* file_name,
    int line
    )

Sets error status and performs some additional actions (displaying message box, writing message to stderr, terminating application etc.) depending on the current error mode

int
cvErrorFromIppStatus(int ipp_status)

Maps IPP error codes to the counterparts from OpenCV

const char*
cvErrorStr(int status)

Retrieves textual description of the error given its code

void
cvExp(
    const CvArr* src,
    CvArr* dst
    )

Does exponention: dst(idx) = exp(src(idx)). Overflow is not handled yet. Underflow is handled. Maximal relative error is ~7e-6 for single-precision input

float
cvFastArctan(
    float y,
    float x
    )

Fast arctangent calculation

CvGraphEdge*
cvFindGraphEdge(
    const CvGraph* graph,
    int start_idx,
    int end_idx
    )

Find edge connecting two vertices

CvTypeInfo*
cvFindType(const char* type_name)

Finds a type by its name.

The function finds a registered type by its name. It returns NULL if there is no type with the specified name.

Parameters:

type_name Type name
CvTypeInfo*
cvFirstType(void)

Returns the beginning of a type list.

The function returns the first type in the list of registered types. Navigation through the list can be done via the prev and next fields of the CvTypeInfo structure.

void
cvFlip(
    const CvArr* src,
    CvArr* dst = NULL,
    int flip_mode = 0
    )

Mirror array data around horizontal (flip=0), vertical (flip=1) or both(flip=-1) axises: cvFlip(src) flips images vertically and sequences horizontally (inplace)

void
cvFlushSeqWriter(CvSeqWriter* writer)

Updates sequence header. May be useful to get access to some of previously written elements via cvGetSeqElem or sequence reader

void
cvFree_(void* ptr)

free wrapper. Here and further all the memory releasing functions (that all call cvFree) take double pointer in order to to clear pointer to the data after releasing it. Passing pointer to NULL pointer is Ok: nothing happens in this case

void
cvGEMM(
    const CvArr* src1,
    const CvArr* src2,
    double alpha,
    const CvArr* src3,
    double beta,
    CvArr* dst,
    int tABC = 0
    )

Extended matrix transform: dst = alpha*op(A)*op(B) + beta*op(C), where op(X) is X or X^T

CvScalar
cvGet1D(
    const CvArr* arr,
    int idx0
    )

Return a specific array element.

The functions return a specific array element. In the case of a sparse array the functions return 0 if the requested node does not exist (no new node is created by the functions).

Parameters:

arr Input array
idx0 The first zero-based component of the element index
CvScalar
cvGet2D(
    const CvArr* arr,
    int idx0,
    int idx1
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

CvScalar
cvGet3D(
    const CvArr* arr,
    int idx0,
    int idx1,
    int idx2
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

CvMat*
cvGetCol(
    const CvArr* arr,
    CvMat* submat,
    int col
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters:

arr Input array
submat Pointer to the resulting sub-array header
col Zero-based index of the selected column
CvMat*
cvGetCols(
    const CvArr* arr,
    CvMat* submat,
    int start_col,
    int end_col
    )

Returns one of more array columns.

The functions return the header, corresponding to a specified column span of the input array. That

is, no data is copied. Therefore, any modifications of the submatrix will affect the original array. If you need to copy the columns, use cvCloneMat. cvGetCol(arr, submat, col) is a shortcut for cvGetCols(arr, submat, col, col+1).

Parameters:

arr Input array
submat Pointer to the resulting sub-array header
start_col Zero-based index of the starting column (inclusive) of the span
end_col Zero-based index of the ending column (exclusive) of the span
CvMat*
cvGetDiag(
    const CvArr* arr,
    CvMat* submat,
    int diag = 0
    )

Returns one of array diagonals.

The function returns the header, corresponding to a specified diagonal of the input array.

Parameters:

arr Input array
submat Pointer to the resulting sub-array header
diag Index of the array diagonal. Zero value corresponds to the main diagonal, -1 corresponds to the diagonal above the main, 1 corresponds to the diagonal below the main, and so forth.
int
cvGetDims(
    const CvArr* arr,
    int* sizes = NULL
    )

Return number of array dimensions.

The function returns the array dimensionality and the array of dimension sizes. In the case of IplImage or CvMat it always returns 2 regardless of number of image/matrix rows. For example, the following code calculates total number of array elements:

int sizes[CV_MAX_DIM];
int i, total = 1;
int dims = cvGetDims(arr, size);
for(i = 0; i < dims; i++ )
    total *= sizes[i];

Parameters:

arr Input array
sizes Optional output vector of the array dimension sizes. For 2d arrays the number of rows (height) goes first, number of columns (width) next.
int
cvGetDimSize(
    const CvArr* arr,
    int index
    )

Returns array size along the specified dimension.

Parameters:

arr Input array
index Zero-based dimension index (for matrices 0 means number of rows, 1 means number of columns; for images 0 means height, 1 means width)
int
cvGetElemType(const CvArr* arr)

Returns type of array elements.

The function returns type of the array elements. In the case of IplImage the type is converted to CvMat-like representation. For example, if the image has been created as:

IplImage* img = cvCreateImage(cvSize(640, 480), IPL_DEPTH_8U, 3);

The code cvGetElemType(img) will return CV_8UC3.

Parameters:

arr Input array
int
cvGetErrInfo(
    const char** errcode_desc,
    const char** description,
    const char** filename,
    int* line
    )

Retrieves detailed information about the last error occurred

int
cvGetErrMode(void)

Retrives current error processing mode

int
cvGetErrStatus(void)

Get current OpenCV error status

CvFileNode*
cvGetFileNode(
    CvFileStorage* fs,
    CvFileNode* map,
    const CvStringHashNode* key,
    int create_missing = 0
    )

Finds a node in a map or file storage.

The function finds a file node. It is a faster version of cvGetFileNodeByName (see cvGetHashedKey discussion). Also, the function can insert a new node, if it is not in the map yet.

Parameters:

fs File storage
map The parent map. If it is NULL, the function searches a top-level node. If both map and key are NULLs, the function returns the root file node - a map that contains top-level nodes.
key Unique pointer to the node name, retrieved with cvGetHashedKey
create_missing Flag that specifies whether an absent node should be added to the map
CvFileNode*
cvGetFileNodeByName(
    const CvFileStorage* fs,
    const CvFileNode* map,
    const char* name
    )

Finds a node in a map or file storage.

The function finds a file node by name. The node is searched either in map or, if the pointer is NULL, among the top-level file storage nodes. Using this function for maps and cvGetSeqElem (or sequence reader) for sequences, it is possible to navigate through the file storage. To speed up multiple queries for a certain key (e.g., in the case of an array of structures) one may use a combination of cvGetHashedKey and cvGetFileNode.

Parameters:

fs File storage
map The parent map. If it is NULL, the function searches in all the top-level nodes (streams), starting with the first one.
name The file node name
const char*
cvGetFileNodeName(const CvFileNode* node)

Returns the name of a file node.

The function returns the name of a file node or NULL, if the file node does not have a name or if node is NULL.

Parameters:

node File node
CvStringHashNode*
cvGetHashedKey(
    CvFileStorage* fs,
    const char* name,
    int len = -1,
    int create_missing = 0
    )

Returns a unique pointer for a given name.

The function returns a unique pointer for each particular file node name. This pointer can be then passed to the cvGetFileNode function that is faster than cvGetFileNodeByName because it compares text strings by comparing pointers rather than the strings’ content.

Consider the following example where an array of points is encoded as a sequence of 2-entry maps:

points:
  - { x: 10, y: 10 }
  - { x: 20, y: 20 }
  - { x: 30, y: 30 }
  # ...

Then, it is possible to get hashed “x” and “y” pointers to speed up decoding of the points. :

#include "cxcore.h"

int main( int argc, char** argv )
{
    CvFileStorage* fs = cvOpenFileStorage( "points.yml", 0, CV_STORAGE_READ );
    CvStringHashNode* x_key = cvGetHashedNode( fs, "x", -1, 1 );
    CvStringHashNode* y_key = cvGetHashedNode( fs, "y", -1, 1 );
    CvFileNode* points = cvGetFileNodeByName( fs, 0, "points" );

    if( CV_NODE_IS_SEQ(points->tag) )
    {
        CvSeq* seq = points->data.seq;
        int i, total = seq->total;
        CvSeqReader reader;
        cvStartReadSeq( seq, &reader, 0 );
        for( i = 0; i < total; i++ )
        {
            CvFileNode* pt = (CvFileNode*)reader.ptr;
#if 1 // faster variant
            CvFileNode* xnode = cvGetFileNode( fs, pt, x_key, 0 );
            CvFileNode* ynode = cvGetFileNode( fs, pt, y_key, 0 );
            assert( xnode && CV_NODE_IS_INT(xnode->tag) &&
                    ynode && CV_NODE_IS_INT(ynode->tag));
            int x = xnode->data.i; // or x = cvReadInt( xnode, 0 );
            int y = ynode->data.i; // or y = cvReadInt( ynode, 0 );
#elif 1 // slower variant; does not use x_key & y_key
            CvFileNode* xnode = cvGetFileNodeByName( fs, pt, "x" );
            CvFileNode* ynode = cvGetFileNodeByName( fs, pt, "y" );
            assert( xnode && CV_NODE_IS_INT(xnode->tag) &&
                    ynode && CV_NODE_IS_INT(ynode->tag));
            int x = xnode->data.i; // or x = cvReadInt( xnode, 0 );
            int y = ynode->data.i; // or y = cvReadInt( ynode, 0 );
#else // the slowest yet the easiest to use variant
            int x = cvReadIntByName( fs, pt, "x", 0 );
            int y = cvReadIntByName( fs, pt, "y", 0 );
#endif
            CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
            printf("
        }
    }
    cvReleaseFileStorage( &fs );
    return 0;
}

Please note that whatever method of accessing a map you are using, it is still much slower than using plain sequences; for example, in the above example, it is more efficient to encode the points as pairs of integers in a single numeric sequence.

Parameters:

fs File storage
name Literal node name
len Length of the name (if it is known apriori), or -1 if it needs to be calculated
create_missing Flag that specifies, whether an absent key should be added into the hash table
IplImage*
cvGetImage(
    const CvArr* arr,
    IplImage* image_header
    )

Returns image header for arbitrary array.

The function returns the image header for the input array that can be a matrix (CvMat) or image (IplImage). In the case of an image the function simply returns the input pointer. In the case of CvMat it initializes an image_header structure with the parameters of the input matrix. Note that if we transform IplImage to CvMat using cvGetMat and then transform CvMat back to IplImage using this function, we will get different headers if the ROI is set in the original image.

Parameters:

arr Input array
image_header Pointer to IplImage structure used as a temporary buffer
int
cvGetImageCOI(const IplImage* image)

Returns the index of the channel of interest.

Returns the channel of interest of in an IplImage. Returned values correspond to the coi in cvSetImageCOI.

Parameters:

image A pointer to the image header
CvRect
cvGetImageROI(const IplImage* image)

Returns the image ROI.

If there is no ROI set, cvRect(0,0,image->width,image->height) is returned.

Parameters:

image A pointer to the image header
CvMat*
cvGetMat(
    const CvArr* arr,
    CvMat* header,
    int* coi = NULL,
    int allowND = 0
    )

Returns matrix header for arbitrary array.

The function returns a matrix header for the input array that can be a matrix - CvMat, an image - IplImage, or a multi-dimensional dense array - CvMatND (the third option is allowed only if allowND != 0) . In the case of matrix the function simply returns the input pointer. In the case of IplImage* or CvMatND it initializes the header structure with parameters of the current image ROI and returns &header. Because COI is not supported by CvMat, it is returned separately.

The function provides an easy way to handle both types of arrays - IplImage and CvMat using the same code. Input array must have non-zero data pointer, otherwise the function will report an error.

If the input array is IplImage with planar data layout and COI set, the function returns the pointer to the selected plane and COI == 0. This feature allows user to process IplImage structures with planar data layout, even though OpenCV does not support such images.

Parameters:

arr Input array
header Pointer to CvMat structure used as a temporary buffer
coi Optional output parameter for storing COI
allowND If non-zero, the function accepts multi-dimensional dense arrays (CvMatND*) and returns 2D matrix (if CvMatND has two dimensions) or 1D matrix (when CvMatND has 1 dimension or more than 2 dimensions). The CvMatND array must be continuous.

See also:

cvGetImage, cvarrToMat.

CvScalar
cvGetND(
    const CvArr* arr,
    const int* idx
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters:

arr Input array
idx Array of the element indices
CvSparseNode*
cvGetNextSparseNode(CvSparseMatIterator* mat_iterator)

Returns the next sparse matrix element.

The function moves iterator to the next sparse matrix element and returns pointer to it. In the current version there is no any particular order of the elements, because they are stored in the hash table. The sample below demonstrates how to iterate through the sparse matrix:

// print all the non-zero sparse matrix elements and compute their sum
double sum = 0;
int i, dims = cvGetDims(sparsemat);
CvSparseMatIterator it;
CvSparseNode* node = cvInitSparseMatIterator(sparsemat, &it);

for(; node != 0; node = cvGetNextSparseNode(&it))
{
    int* idx = CV_NODE_IDX(array, node);
    float val = *(float*)CV_NODE_VAL(array, node);
    printf("M");
    for(i = 0; i < dims; i++ )
        printf("[%d]", idx[i]);
    printf("=%g\n", val);

    sum += val;
}

printf("nTotal sum = %g\n", sum);

Parameters:

mat_iterator Sparse array iterator
int
cvGetNumThreads(void)

retrieve/set the number of threads used in OpenMP implementations

int
cvGetOptimalDFTSize(int size0)

Finds optimal DFT vector size >= size0

void
cvGetRawData(
    const CvArr* arr,
    uchar** data,
    int* step = NULL,
    CvSize* roi_size = NULL
    )

Retrieves low-level information about the array.

The function fills output variables with low-level information about the array data. All output

parameters are optional, so some of the pointers may be set to NULL. If the array is IplImage with ROI set, the parameters of ROI are returned.

The following example shows how to get access to array elements. It computes absolute values of the array elements :

float* data;
int step;
CvSize size;

cvGetRawData(array, (uchar**)&data, &step, &size);
step /= sizeof(data[0]);

for(int y = 0; y < size.height; y++, data += step )
    for(int x = 0; x < size.width; x++ )
        data[x] = (float)fabs(data[x]);

Parameters:

arr Array header
data Output pointer to the whole image origin or ROI origin if ROI is set
step Output full row length in bytes
roi_size Output ROI size
double
cvGetReal1D(
    const CvArr* arr,
    int idx0
    )

Return a specific element of single-channel 1D, 2D, 3D or nD array.

Returns a specific element of a single-channel array. If the array has multiple channels, a runtime error is raised. Note that Get?D functions can be used safely for both single-channel and multiple-channel arrays though they are a bit slower.

In the case of a sparse array the functions return 0 if the requested node does not exist (no new node is created by the functions).

Parameters:

arr Input array. Must have a single channel.
idx0 The first zero-based component of the element index
double
cvGetReal2D(
    const CvArr* arr,
    int idx0,
    int idx1
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

double
cvGetReal3D(
    const CvArr* arr,
    int idx0,
    int idx1,
    int idx2
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

double
cvGetRealND(
    const CvArr* arr,
    const int* idx
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters:

arr Input array. Must have a single channel.
idx Array of the element indices
CvFileNode*
cvGetRootFileNode(
    const CvFileStorage* fs,
    int stream_index = 0
    )

Retrieves one of the top-level nodes of the file storage.

The function returns one of the top-level file nodes. The top-level nodes do not have a name, they correspond to the streams that are stored one after another in the file storage. If the index is out of range, the function returns a NULL pointer, so all the top-level nodes can be iterated by subsequent calls to the function with stream_index=0,1,…, until the NULL pointer is returned. This function can be used as a base for recursive traversal of the file storage.

Parameters:

fs File storage
stream_index Zero-based index of the stream. See cvStartNextStream . In most cases, there is only one stream in the file; however, there can be several.
CvMat*
cvGetRow(
    const CvArr* arr,
    CvMat* submat,
    int row
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters:

arr Input array
submat Pointer to the resulting sub-array header
row Zero-based index of the selected row
CvMat*
cvGetRows(
    const CvArr* arr,
    CvMat* submat,
    int start_row,
    int end_row,
    int delta_row = 1
    )

Returns array row or row span.

The functions return the header, corresponding to a specified row/row span of the input array. cvGetRow(arr, submat, row) is a shortcut for cvGetRows(arr, submat, row, row+1).

Parameters:

arr Input array
submat Pointer to the resulting sub-array header
start_row Zero-based index of the starting row (inclusive) of the span
end_row Zero-based index of the ending row (exclusive) of the span
delta_row Index step in the row span. That is, the function extracts every delta_row -th row from start_row and up to (but not including) end_row .
schar*
cvGetSeqElem(
    const CvSeq* seq,
    int index
    )

Retrieves pointer to specified sequence element. Negative indices are supported and mean counting from the end (e.g -1 means the last sequence element)

int
cvGetSeqReaderPos(CvSeqReader* reader)

Returns current sequence reader position (currently observed sequence element)

CvSetElem*
cvGetSetElem(
    const CvSet* set_header,
    int idx
    )

Returns a set element by index. If the element doesn’t belong to the set, NULL is returned

CvSize
cvGetSize(const CvArr* arr)

Returns size of matrix or image ROI.

The function returns number of rows (CvSize::height) and number of columns (CvSize::width) of the input matrix or image. In the case of image the size of ROI is returned.

Parameters:

arr array header
CvMat*
cvGetSubRect(
    const CvArr* arr,
    CvMat* submat,
    CvRect rect
    )

Returns matrix header corresponding to the rectangular sub-array of input image or matrix.

The function returns header, corresponding to a specified rectangle of the input array. In other

words, it allows the user to treat a rectangular part of input array as a stand-alone array. ROI is taken into account by the function so the sub-array of ROI is actually extracted.

Parameters:

arr Input array
submat Pointer to the resultant sub-array header
rect Zero-based coordinates of the rectangle of interest
int
cvGetThreadNum(void)

get index of the thread being executed

int64
cvGetTickCount(void)

helper functions for RNG initialization and accurate time measurement: uses internal clock counter on x86

int
cvGraphAddEdge(
    CvGraph* graph,
    int start_idx,
    int end_idx,
    const CvGraphEdge* edge = NULL,
    CvGraphEdge** inserted_edge = NULL
    )

Link two vertices specifed by indices or pointers if they are not connected or return pointer to already existing edge connecting the vertices. Functions return 1 if a new edge was created, 0 otherwise

int
cvGraphAddVtx(
    CvGraph* graph,
    const CvGraphVtx* vtx = NULL,
    CvGraphVtx** inserted_vtx = NULL
    )

Adds new vertex to the graph

void
cvGraphRemoveEdge(
    CvGraph* graph,
    int start_idx,
    int end_idx
    )

Remove edge connecting two vertices

int
cvGraphRemoveVtx(
    CvGraph* graph,
    int index
    )

Removes vertex from the graph together with all incident edges

int
cvGraphVtxDegree(
    const CvGraph* graph,
    int vtx_idx
    )

Count number of edges incident to the vertex

int
cvGuiBoxReport(
    int status,
    const char* func_name,
    const char* err_msg,
    const char* file_name,
    int line,
    void* userdata
    )

Output to MessageBox(WIN32)

int
cvIncRefData(CvArr* arr)

Increments array data reference counter.

The function increments CvMat or CvMatND data reference counter and returns the new counter value if the reference counter pointer is not NULL, otherwise it returns zero.

Parameters:

arr Array header
IplImage*
cvInitImageHeader(
    IplImage* image,
    CvSize size,
    int depth,
    int channels,
    int origin = 0,
    int align = 4
    )

Initializes an image header that was previously allocated.

The returned IplImage* points to the initialized header.

Parameters:

image Image header to initialize
size Image width and height
depth Image depth (see cvCreateImage )
channels Number of channels (see cvCreateImage )
origin Top-left IPL_ORIGIN_TL or bottom-left IPL_ORIGIN_BL
align Alignment for image rows, typically 4 or 8 bytes
CvMat*
cvInitMatHeader(
    CvMat* mat,
    int rows,
    int cols,
    int type,
    void* data = NULL,
    int step = 0x7fffffff
    )

Initializes a pre-allocated matrix header.

This function is often used to process raw data with OpenCV matrix functions. For example, the following code computes the matrix product of two matrices, stored as ordinary arrays:

double a[] = { 1, 2, 3, 4,
               5, 6, 7, 8,
               9, 10, 11, 12 };

double b[] = { 1, 5, 9,
               2, 6, 10,
               3, 7, 11,
               4, 8, 12 };

double c[9];
CvMat Ma, Mb, Mc ;

cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a);
cvInitMatHeader(&Mb, 4, 3, CV_64FC1, b);
cvInitMatHeader(&Mc, 3, 3, CV_64FC1, c);

cvMatMulAdd(&Ma, &Mb, 0, &Mc);
// the c array now contains the product of a (3x4) and b (4x3)

Parameters:

mat A pointer to the matrix header to be initialized
rows Number of rows in the matrix
cols Number of columns in the matrix
type Type of the matrix elements, see cvCreateMat .
data Optional: data pointer assigned to the matrix header
step Optional: full row width in bytes of the assigned data. By default, the minimal possible step is used which assumes there are no gaps between subsequent rows of the matrix.
CvMatND*
cvInitMatNDHeader(
    CvMatND* mat,
    int dims,
    const int* sizes,
    int type,
    void* data = NULL
    )

Initializes a pre-allocated multi-dimensional array header.

Parameters:

mat A pointer to the array header to be initialized
dims The number of array dimensions
sizes An array of dimension sizes
type Type of array elements, see cvCreateMat
data Optional data pointer assigned to the matrix header
int
cvInitNArrayIterator(
    int count,
    CvArr** arrs,
    const CvArr* mask,
    CvMatND* stubs,
    CvNArrayIterator* array_iterator,
    int flags = 0
    )

initializes iterator that traverses through several arrays simulteneously (the function together with cvNextArraySlice is used for N-ari element-wise operations)

CvSparseNode*
cvInitSparseMatIterator(
    const CvSparseMat* mat,
    CvSparseMatIterator* mat_iterator
    )

Initializes sparse array elements iterator.

The function initializes iterator of sparse array elements and returns pointer to the first element, or NULL if the array is empty.

Parameters:

mat Input array
mat_iterator Initialized iterator
void
cvInRange(
    const CvArr* src,
    const CvArr* lower,
    const CvArr* upper,
    CvArr* dst
    )

dst(idx) = lower(idx) <= src(idx) < upper(idx)

void
cvInRangeS(
    const CvArr* src,
    CvScalar lower,
    CvScalar upper,
    CvArr* dst
    )

dst(idx) = lower <= src(idx) < upper

void
cvInsertNodeIntoTree(
    void* node,
    void* parent,
    void* frame
    )

Inserts sequence into tree with specified “parent” sequence. If parent is equal to frame (e.g. the most external contour), then added contour will have null pointer to parent.

double
cvInvert(
    const CvArr* src,
    CvArr* dst,
    int method = 0
    )

Inverts matrix

void*
cvLoad(
    const char* filename,
    CvMemStorage* memstorage = NULL,
    const char* name = NULL,
    const char** real_name = NULL
    )

Loads an object from a file.

The function loads an object from a file. It basically reads the specified file, find the first top-level node and calls cvRead for that node. If the file node does not have type information or the type information can not be found by the type name, the function returns NULL. After the object is loaded, the file storage is closed and all the temporary buffers are deleted. Thus, to load a dynamic structure, such as a sequence, contour, or graph, one should pass a valid memory storage destination to the function.

Parameters:

filename File name
memstorage Memory storage for dynamic structures, such as CvSeq or CvGraph. It is not used for matrices or images.
name Optional object name. If it is NULL, the first top-level object in the storage will be loaded.
real_name Optional output parameter that will contain the name of the loaded object (useful if name=NULL )
void
cvLog(
    const CvArr* src,
    CvArr* dst
    )

Calculates natural logarithms: dst(idx) = log(abs(src(idx))). Logarithm of 0 gives large negative number(~-700) Maximal relative error is ~3e-7 for single-precision output

void
cvLUT(
    const CvArr* src,
    CvArr* dst,
    const CvArr* lut
    )

Does look-up transformation. Elements of the source array (that should be 8uC1 or 8sC1) are used as indexes in lutarr 256-element table

double
cvMahalanobis(
    const CvArr* vec1,
    const CvArr* vec2,
    const CvArr* mat
    )

Calculates Mahalanobis(weighted) distance

CvSeq*
cvMakeSeqHeaderForArray(
    int seq_type,
    int header_size,
    int elem_size,
    void* elements,
    int total,
    CvSeq* seq,
    CvSeqBlock* block
    )

Creates sequence header for array. After that all the operations on sequences that do not alter the content can be applied to the resultant sequence

void
cvMax(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst
    )

dst(idx) = max(src1(idx),src2(idx))

void
cvMaxS(
    const CvArr* src,
    double value,
    CvArr* dst
    )

dst(idx) = max(src(idx),value)

void*
cvMemStorageAlloc(
    CvMemStorage* storage,
    size_t size
    )

Allocates continuous buffer of the specified size in the storage

CvString
cvMemStorageAllocString(
    CvMemStorage* storage,
    const char* ptr,
    int len = -1
    )

Allocates string in memory storage

void
cvMerge(
    const CvArr* src0,
    const CvArr* src1,
    const CvArr* src2,
    const CvArr* src3,
    CvArr* dst
    )

Merges a set of single-channel arrays into the single multi-channel array or inserts one particular [color] plane to the array

void
cvMin(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst
    )

dst(idx) = min(src1(idx),src2(idx))

void
cvMinMaxLoc(
    const CvArr* arr,
    double* min_val,
    double* max_val,
    CvPoint* min_loc = NULL,
    CvPoint* max_loc = NULL,
    const CvArr* mask = NULL
    )

Finds global minimum, maximum and their positions

void
cvMinS(
    const CvArr* src,
    double value,
    CvArr* dst
    )

dst(idx) = min(src(idx),value)

void
cvMixChannels(
    const CvArr** src,
    int src_count,
    CvArr** dst,
    int dst_count,
    const int* from_to,
    int pair_count
    )

Copies several channels from input arrays to certain channels of output arrays

void
cvMul(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    double scale = 1
    )

dst(idx) = src1(idx) * src2(idx) * scale (scaled element-wise multiplication of 2 arrays)

void
cvMulSpectrums(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    int flags
    )

Multiply results of DFTs: DFT(X)*DFT(Y) or DFT(X)*conj(DFT(Y))

See also:

core_c_DftFlags “flags”

void
cvMulTransposed(
    const CvArr* src,
    CvArr* dst,
    int order,
    const CvArr* delta = NULL,
    double scale = 1.
    )

Calculates (A-delta)*(A-delta)^T (order=0) or (A-delta)^T*(A-delta) (order=1)

int
cvNextGraphItem(CvGraphScanner* scanner)

Get next graph element

int
cvNextNArraySlice(CvNArrayIterator* array_iterator)

returns zero value if iteration is finished, non-zero (slice length) otherwise

double
cvNorm(
    const CvArr* arr1,
    const CvArr* arr2 = NULL,
    int norm_type = 4,
    const CvArr* mask = NULL
    )

Finds norm, difference norm or relative difference norm for an array (or two arrays)

See also:

ref core_c_NormFlags “flags”

void
cvNormalize(
    const CvArr* src,
    CvArr* dst,
    double a = 1.,
    double b = 0.,
    int norm_type = 4,
    const CvArr* mask = NULL
    )

See also:

ref core_c_NormFlags “flags”

void
cvNot(
    const CvArr* src,
    CvArr* dst
    )

dst(idx) = ~src(idx)

int
cvNulDevReport(
    int status,
    const char* func_name,
    const char* err_msg,
    const char* file_name,
    int line,
    void* userdata
    )

Output nothing

CvFileStorage*
cvOpenFileStorage(
    const char* filename,
    CvMemStorage* memstorage,
    int flags,
    const char* encoding = NULL
    )

Opens file storage for reading or writing data.

The function opens file storage for reading or writing data. In the latter case, a new file is created or an existing file is rewritten. The type of the read or written file is determined by the filename extension: .xml for XML, .yml or .yaml for YAML and .json for JSON.

At the same time, it also supports adding parameters like “example.xml?base64”. The three ways are the same:

fs = cvOpenFileStorage( "example.yml?base64", 0, CV_STORAGE_WRITE );
fs = cvOpenFileStorage( "example.yml"       , 0, CV_STORAGE_WRITE_BASE64 );
fs = cvOpenFileStorage( "example.yml"       , 0, CV_STORAGE_WRITE | CV_STORAGE_BASE64 );

The function returns a pointer to the CvFileStorage structure. If the file cannot be opened then the function returns NULL.

Parameters:

filename Name of the file associated with the storage
memstorage Memory storage used for temporary data and for : storing dynamic structures, such as CvSeq or CvGraph. If it is NULL, a temporary memory storage is created and used.
flags

Can be one of the following: * CV_STORAGE_READ the storage is open for reading

  • CV_STORAGE_WRITE the storage is open for writing

(use CV_STORAGE_WRITE | CV_STORAGE_WRITE_BASE64 to write rawdata in Base64)

encoding  
void
cvOr(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    const CvArr* mask = NULL
    )

dst(idx) = src1(idx) | src2(idx)

void
cvOrS(
    const CvArr* src,
    CvScalar value,
    CvArr* dst,
    const CvArr* mask = NULL
    )

dst(idx) = src(idx) | value

void
cvPerspectiveTransform(
    const CvArr* src,
    CvArr* dst,
    const CvMat* mat
    )

Does perspective transform on every element of input array

void
cvPolarToCart(
    const CvArr* magnitude,
    const CvArr* angle,
    CvArr* x,
    CvArr* y,
    int angle_in_degrees = 0
    )

Does polar->cartesian coordinates conversion. Either of output components (magnitude or angle) is optional. If magnitude is missing it is assumed to be all 1’s

void
cvPow(
    const CvArr* src,
    CvArr* dst,
    double power
    )

Does powering: dst(idx) = src(idx)^power

uchar*
cvPtr1D(
    const CvArr* arr,
    int idx0,
    int* type = NULL
    )

Return pointer to a particular array element.

The functions return a pointer to a specific array element. Number of array dimension should match to the number of indices passed to the function except for cvPtr1D function that can be used for sequential access to 1D, 2D or nD dense arrays.

The functions can be used for sparse arrays as well - if the requested node does not exist they create it and set it to zero.

All these as well as other functions accessing array elements ( cvGetND , cvGetRealND , cvSet , cvSetND , cvSetRealND ) raise an error in case if the element index is out of range.

Parameters:

arr Input array
idx0 The first zero-based component of the element index
type Optional output parameter: type of matrix elements
uchar*
cvPtr2D(
    const CvArr* arr,
    int idx0,
    int idx1,
    int* type = NULL
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

uchar*
cvPtr3D(
    const CvArr* arr,
    int idx0,
    int idx1,
    int idx2,
    int* type = NULL
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

uchar*
cvPtrND(
    const CvArr* arr,
    const int* idx,
    int* type = NULL,
    int create_node = 1,
    unsigned* precalc_hashval = NULL
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters:

arr Input array
idx Array of the element indices
type Optional output parameter: type of matrix elements
create_node Optional input parameter for sparse matrices. Non-zero value of the parameter means that the requested element is created if it does not exist already.
precalc_hashval Optional input parameter for sparse matrices. If the pointer is not NULL, the function does not recalculate the node hash value, but takes it from the specified location. It is useful for speeding up pair-wise operations (TODO: provide an example)
void
cvRandArr(
    CvRNG* rng,
    CvArr* arr,
    int dist_type,
    CvScalar param1,
    CvScalar param2
    )

Fills an array with random numbers and updates the RNG state.

The function fills the destination array with uniformly or normally distributed random numbers.

Parameters:

rng CvRNG state initialized by cvRNG
arr The destination array
dist_type

Distribution type * CV_RAND_UNI uniform distribution

  • CV_RAND_NORMAL normal or Gaussian distribution
param1 The first parameter of the distribution. In the case of a uniform distribution it is the inclusive lower boundary of the random numbers range. In the case of a normal distribution it is the mean value of the random numbers.
param2 The second parameter of the distribution. In the case of a uniform distribution it is the exclusive upper boundary of the random numbers range. In the case of a normal distribution it is the standard deviation of the random numbers.

See also:

randu, randn, RNG::fill.

CvArr*
cvRange(
    CvArr* mat,
    double start,
    double end
    )

Fills matrix with given range of numbers

void*
cvRead(
    CvFileStorage* fs,
    CvFileNode* node,
    CvAttrList* attributes = NULL
    )

Decodes an object and returns a pointer to it.

The function decodes a user object (creates an object in a native representation from the file storage subtree) and returns it. The object to be decoded must be an instance of a registered type that supports the read method (see CvTypeInfo). The type of the object is determined by the type name that is encoded in the file. If the object is a dynamic structure, it is created either in memory storage and passed to cvOpenFileStorage or, if a NULL pointer was passed, in temporary memory storage, which is released when cvReleaseFileStorage is called. Otherwise, if the object is not a dynamic structure, it is created in a heap and should be released with a specialized function or by using the generic cvRelease.

Parameters:

fs File storage
node The root object node
attributes Unused parameter
void*
cvReadByName(
    CvFileStorage* fs,
    const CvFileNode* map,
    const char* name,
    CvAttrList* attributes = NULL
    )

Finds an object by name and decodes it.

The function is a simple superposition of cvGetFileNodeByName and cvRead.

Parameters:

fs File storage
map The parent map. If it is NULL, the function searches a top-level node.
name The node name
attributes Unused parameter
int
cvReadInt(
    const CvFileNode* node,
    int default_value = 0
    )

Retrieves an integer value from a file node.

The function returns an integer that is represented by the file node. If the file node is NULL, the default_value is returned (thus, it is convenient to call the function right after cvGetFileNode without checking for a NULL pointer). If the file node has type CV_NODE_INT, then node->data.i is returned. If the file node has type CV_NODE_REAL, then node->data.f is converted to an integer and returned. Otherwise the error is reported.

Parameters:

node File node
default_value The value that is returned if node is NULL
int
cvReadIntByName(
    const CvFileStorage* fs,
    const CvFileNode* map,
    const char* name,
    int default_value = 0
    )

Finds a file node and returns its value.

The function is a simple superposition of cvGetFileNodeByName and cvReadInt.

Parameters:

fs File storage
map The parent map. If it is NULL, the function searches a top-level node.
name The node name
default_value The value that is returned if the file node is not found
void
cvReadRawData(
    const CvFileStorage* fs,
    const CvFileNode* src,
    void* dst,
    const char* dt
    )

Reads multiple numbers.

The function reads elements from a file node that represents a sequence of scalars.

Parameters:

fs File storage
src The file node (a sequence) to read numbers from
dst Pointer to the destination array
dt Specification of each array element. It has the same format as in cvWriteRawData .
void
cvReadRawDataSlice(
    const CvFileStorage* fs,
    CvSeqReader* reader,
    int count,
    void* dst,
    const char* dt
    )

Initializes file node sequence reader.

The function reads one or more elements from the file node, representing a sequence, to a user-specified array. The total number of read sequence elements is a product of total and the number of components in each array element. For example, if dt=2if, the function will read total*3 sequence elements. As with any sequence, some parts of the file node sequence can be skipped or read repeatedly by repositioning the reader using cvSetSeqReaderPos.

Parameters:

fs File storage
reader The sequence reader. Initialize it with cvStartReadRawData .
count The number of elements to read
dst Pointer to the destination array
dt Specification of each array element. It has the same format as in cvWriteRawData .
double
cvReadReal(
    const CvFileNode* node,
    double default_value = 0.
    )

Retrieves a floating-point value from a file node.

The function returns a floating-point value that is represented by the file node. If the file node is NULL, the default_value is returned (thus, it is convenient to call the function right after cvGetFileNode without checking for a NULL pointer). If the file node has type CV_NODE_REAL , then node->data.f is returned. If the file node has type CV_NODE_INT , then node-:math:>data.f is converted to floating-point and returned. Otherwise the result is not determined.

Parameters:

node File node
default_value The value that is returned if node is NULL
double
cvReadRealByName(
    const CvFileStorage* fs,
    const CvFileNode* map,
    const char* name,
    double default_value = 0.
    )

Finds a file node and returns its value.

The function is a simple superposition of cvGetFileNodeByName and cvReadReal .

Parameters:

fs File storage
map The parent map. If it is NULL, the function searches a top-level node.
name The node name
default_value The value that is returned if the file node is not found
const char*
cvReadString(
    const CvFileNode* node,
    const char* default_value = NULL
    )

Retrieves a text string from a file node.

The function returns a text string that is represented by the file node. If the file node is NULL, the default_value is returned (thus, it is convenient to call the function right after cvGetFileNode without checking for a NULL pointer). If the file node has type CV_NODE_STR , then node-:math:>data.str.ptr is returned. Otherwise the result is not determined.

Parameters:

node File node
default_value The value that is returned if node is NULL
const char*
cvReadStringByName(
    const CvFileStorage* fs,
    const CvFileNode* map,
    const char* name,
    const char* default_value = NULL
    )

Finds a file node by its name and returns its value.

The function is a simple superposition of cvGetFileNodeByName and cvReadString .

Parameters:

fs File storage
map The parent map. If it is NULL, the function searches a top-level node.
name The node name
default_value The value that is returned if the file node is not found
CvErrorCallback
cvRedirectError(
    CvErrorCallback error_handler,
    void* userdata = NULL,
    void** prev_userdata = NULL
    )

Assigns a new error-handling function

void
cvReduce(
    const CvArr* src,
    CvArr* dst,
    int dim = -1,
    int op = 0
    )

See also:

flags

void
cvRegisterType(const CvTypeInfo* info)

Registers a new type.

The function registers a new type, which is described by info . The function creates a copy of the structure, so the user should delete it after calling the function.

Parameters:

info Type info structure
void
cvRelease(void** struct_ptr)

Releases an object.

The function finds the type of a given object and calls release with the double pointer.

Parameters:

struct_ptr Double pointer to the object
void
cvReleaseData(CvArr* arr)

Releases array data.

The function releases the array data. In the case of CvMat or CvMatND it simply calls cvDecRefData(), that is the function can not deallocate external data. See also the note to cvCreateData .

Parameters:

arr Array header
void
cvReleaseFileStorage(CvFileStorage** fs)

Releases file storage.

The function closes the file associated with the storage and releases all the temporary structures. It must be called after all I/O operations with the storage are finished.

Parameters:

fs Double pointer to the released file storage
void
cvReleaseGraphScanner(CvGraphScanner** scanner)

Releases graph scanner.

void
cvReleaseImage(IplImage** image)

Deallocates the image header and the image data.

This call is a shortened form of :

if(*image )
{
    cvReleaseData(*image);
    cvReleaseImageHeader(image);
}

Parameters:

image Double pointer to the image header
void
cvReleaseImageHeader(IplImage** image)

Deallocates an image header.

This call is an analogue of :

if(image )
{
    iplDeallocate(*image, IPL_IMAGE_HEADER | IPL_IMAGE_ROI);
    *image = 0;
}

but it does not use IPL functions by default (see the CV_TURN_ON_IPL_COMPATIBILITY macro).

Parameters:

image Double pointer to the image header
void
cvReleaseMat(CvMat** mat)

Deallocates a matrix.

The function decrements the matrix data reference counter and deallocates matrix header. If the data reference counter is 0, it also deallocates the data. :

if(*mat )
    cvDecRefData(*mat);
cvFree((void**)mat);

Parameters:

mat Double pointer to the matrix
void
cvReleaseMatND(CvMatND** mat)

Deallocates a multi-dimensional array.

The function decrements the array data reference counter and releases the array header. If the reference counter reaches 0, it also deallocates the data. :

if(*mat )
    cvDecRefData(*mat);
cvFree((void**)mat);

Parameters:

mat Double pointer to the array
void
cvReleaseMemStorage(CvMemStorage** storage)

Releases memory storage. All the children of a parent must be released before the parent. A child storage returns all the blocks to parent when it is released

void
cvReleaseSparseMat(CvSparseMat** mat)

Deallocates sparse array.

The function releases the sparse array and clears the array pointer upon exit.

Parameters:

mat Double pointer to the array
void
cvRemoveNodeFromTree(
    void* node,
    void* frame
    )

Removes contour from tree (together with the contour children).

void
cvRepeat(
    const CvArr* src,
    CvArr* dst
    )

Repeats source 2d array several times in both horizontal and vertical direction to fill destination array

void
cvResetImageROI(IplImage* image)

Resets the image ROI to include the entire image and releases the ROI structure.

This produces a similar result to the following, but in addition it releases the ROI structure. :

cvSetImageROI(image, cvRect(0, 0, image->width, image->height ));
cvSetImageCOI(image, 0);

Parameters:

image A pointer to the image header
CvMat*
cvReshape(
    const CvArr* arr,
    CvMat* header,
    int new_cn,
    int new_rows = 0
    )

Changes shape of matrix/image without copying data.

The function initializes the CvMat header so that it points to the same data as the original array but has a different shape - different number of channels, different number of rows, or both.

The following example code creates one image buffer and two image headers, the first is for a 320x240x3 image and the second is for a 960x240x1 image:

IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);
CvMat gray_mat_hdr;
IplImage gray_img_hdr, *gray_img;
cvReshape(color_img, &gray_mat_hdr, 1);
gray_img = cvGetImage(&gray_mat_hdr, &gray_img_hdr);

And the next example converts a 3x3 matrix to a single 1x9 vector:

CvMat* mat = cvCreateMat(3, 3, CV_32F);
CvMat row_header, *row;
row = cvReshape(mat, &row_header, 0, 1);

Parameters:

arr Input array
header Output header to be filled
new_cn New number of channels. ‘new_cn = 0’ means that the number of channels remains unchanged.
new_rows New number of rows. ‘new_rows = 0’ means that the number of rows remains unchanged unless it needs to be changed according to new_cn value.
CvArr*
cvReshapeMatND(
    const CvArr* arr,
    int sizeof_header,
    CvArr* header,
    int new_cn,
    int new_dims,
    int* new_sizes
    )

Changes the shape of a multi-dimensional array without copying the data.

The function is an advanced version of cvReshape that can work with multi-dimensional arrays as well (though it can work with ordinary images and matrices) and change the number of dimensions.

Below are the two samples from the cvReshape description rewritten using cvReshapeMatND:

IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);
IplImage gray_img_hdr, *gray_img;
gray_img = (IplImage*)cvReshapeMatND(color_img, sizeof(gray_img_hdr), &gray_img_hdr, 1, 0, 0);
...
int size[] = { 2, 2, 2 };
CvMatND* mat = cvCreateMatND(3, size, CV_32F);
CvMat row_header, *row;
row = (CvMat*)cvReshapeMatND(mat, sizeof(row_header), &row_header, 0, 1, 0);

In C, the header file for this function includes a convenient macro cvReshapeND that does away with the sizeof_header parameter. So, the lines containing the call to cvReshapeMatND in the examples may be replaced as follow:

gray_img = (IplImage*)cvReshapeND(color_img, &gray_img_hdr, 1, 0, 0);
...
row = (CvMat*)cvReshapeND(mat, &row_header, 0, 1, 0);

Parameters:

arr Input array
sizeof_header Size of output header to distinguish between IplImage, CvMat and CvMatND output headers
header Output header to be filled
new_cn New number of channels. new_cn = 0 means that the number of channels remains unchanged.
new_dims New number of dimensions. new_dims = 0 means that the number of dimensions remains the same.
new_sizes Array of new dimension sizes. Only new_dims-1 values are used, because the total number of elements must remain the same. Thus, if new_dims = 1, new_sizes array is not used.
void
cvRestoreMemStoragePos(
    CvMemStorage* storage,
    CvMemStoragePos* pos
    )

Restore a storage “free memory” position

void
cvSave(
    const char* filename,
    const void* struct_ptr,
    const char* name = NULL,
    const char* comment = NULL,
    CvAttrList attributes = cvAttrList()
    )

Saves an object to a file.

The function saves an object to a file. It provides a simple interface to cvWrite .

Parameters:

filename File name
struct_ptr Object to save
name Optional object name. If it is NULL, the name will be formed from filename .
comment Optional comment to put in the beginning of the file
attributes Optional attributes passed to cvWrite
void
cvSaveMemStoragePos(
    const CvMemStorage* storage,
    CvMemStoragePos* pos
    )

Remember a storage “free memory” position

void
cvScalarToRawData(
    const CvScalar* scalar,
    void* data,
    int type,
    int extend_to_12 = 0
    )

low-level scalar <-> raw data conversion functions

void
cvScaleAdd(
    const CvArr* src1,
    CvScalar scale,
    const CvArr* src2,
    CvArr* dst
    )

dst = src1 * scale + src2

int
cvSeqElemIdx(
    const CvSeq* seq,
    const void* element,
    CvSeqBlock** block = NULL
    )

Calculates index of the specified sequence element. Returns -1 if element does not belong to the sequence

schar*
cvSeqInsert(
    CvSeq* seq,
    int before_index,
    const void* element = NULL
    )

Inserts a new element in the middle of sequence. cvSeqInsert(seq,0,elem) == cvSeqPushFront(seq,elem)

void
cvSeqInsertSlice(
    CvSeq* seq,
    int before_index,
    const CvArr* from_arr
    )

Inserts a sequence or array into another sequence

void
cvSeqInvert(CvSeq* seq)

Reverses order of sequence elements in-place

int
cvSeqPartition(
    const CvSeq* seq,
    CvMemStorage* storage,
    CvSeq** labels,
    CvCmpFunc is_equal,
    void* userdata
    )

Splits sequence into one or more equivalence classes using the specified criteria

void
cvSeqPop(
    CvSeq* seq,
    void* element = NULL
    )

Removes the last element from sequence and optionally saves it

void
cvSeqPopFront(
    CvSeq* seq,
    void* element = NULL
    )

Removes the first element from sequence and optioanally saves it

void
cvSeqPopMulti(
    CvSeq* seq,
    void* elements,
    int count,
    int in_front = 0
    )

Removes several elements from the end of sequence and optionally saves them

schar*
cvSeqPush(
    CvSeq* seq,
    const void* element = NULL
    )

Adds new element to the end of sequence. Returns pointer to the element

schar*
cvSeqPushFront(
    CvSeq* seq,
    const void* element = NULL
    )

Adds new element to the beginning of sequence. Returns pointer to it

void
cvSeqPushMulti(
    CvSeq* seq,
    const void* elements,
    int count,
    int in_front = 0
    )

Adds several new elements to the end of sequence

void
cvSeqRemove(
    CvSeq* seq,
    int index
    )

Removes specified sequence element

void
cvSeqRemoveSlice(
    CvSeq* seq,
    CvSlice slice
    )

Removes sequence slice

schar*
cvSeqSearch(
    CvSeq* seq,
    const void* elem,
    CvCmpFunc func,
    int is_sorted,
    int* elem_idx,
    void* userdata = NULL
    )

Finds element in a [sorted] sequence

CvSeq*
cvSeqSlice(
    const CvSeq* seq,
    CvSlice slice,
    CvMemStorage* storage = NULL,
    int copy_data = 0
    )

Extracts sequence slice (with or without copying sequence elements)

void
cvSeqSort(
    CvSeq* seq,
    CvCmpFunc func,
    void* userdata = NULL
    )

Sorts sequence in-place given element comparison function

void
cvSet(
    CvArr* arr,
    CvScalar value,
    const CvArr* mask = NULL
    )

Sets every element of an array to a given value.

The function copies the scalar value to every selected element of the destination array:

\[\texttt{arr} (I)= \texttt{value} \quad \text{if} \quad \texttt{mask} (I) \ne 0\]

If array arr is of IplImage type, then is ROI used, but COI must not be set.

Parameters:

arr The destination array
value Fill value
mask Operation mask, 8-bit single channel array; specifies elements of the destination array to be changed
void
cvSet1D(
    CvArr* arr,
    int idx0,
    CvScalar value
    )

Change the particular array element.

The functions assign the new value to a particular array element. In the case of a sparse array the functions create the node if it does not exist yet.

Parameters:

arr Input array
idx0 The first zero-based component of the element index
value The assigned value
void
cvSet2D(
    CvArr* arr,
    int idx0,
    int idx1,
    CvScalar value
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

void
cvSet3D(
    CvArr* arr,
    int idx0,
    int idx1,
    int idx2,
    CvScalar value
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

int
cvSetAdd(
    CvSet* set_header,
    CvSetElem* elem = NULL,
    CvSetElem** inserted_elem = NULL
    )

Adds new element to the set and returns pointer to it

void
cvSetData(
    CvArr* arr,
    void* data,
    int step
    )

Assigns user data to the array header.

The function assigns user data to the array header. Header should be initialized before using cvCreateMatHeader, cvCreateImageHeader, cvCreateMatNDHeader, cvInitMatHeader, cvInitImageHeader or cvInitMatNDHeader.

Parameters:

arr Array header
data User data
step Full row length in bytes
int
cvSetErrMode(int mode)

Sets error processing mode, returns previously used mode

void
cvSetErrStatus(int status)

Sets error status silently

void
cvSetIdentity(
    CvArr* mat,
    CvScalar value = cvRealScalar(1)
    )
  • Finds selected eigen values and vectors of a symmetric matrix */ Makes an identity matrix (mat_ij = i == j)
void
cvSetImageCOI(
    IplImage* image,
    int coi
    )

Sets the channel of interest in an IplImage.

If the ROI is set to NULL and the coi is not 0, the ROI is allocated. Most OpenCV functions do not* support the COI setting, so to process an individual image/matrix channel one may copy (via cvCopy or cvSplit) the channel to a separate image/matrix, process it and then copy the result back (via cvCopy or cvMerge) if needed.

Parameters:

image A pointer to the image header
coi The channel of interest. 0 - all channels are selected, 1 - first channel is selected, etc. Note that the channel indices become 1-based.
void
cvSetImageROI(
    IplImage* image,
    CvRect rect
    )

Sets an image Region Of Interest (ROI) for a given rectangle.

If the original image ROI was NULL and the rect is not the whole image, the ROI structure is allocated.

Most OpenCV functions support the use of ROI and treat the image rectangle as a separate image. For example, all of the pixel coordinates are counted from the top-left (or bottom-left) corner of the ROI, not the original image.

Parameters:

image A pointer to the image header
rect The ROI rectangle
void
cvSetIPLAllocators(
    Cv_iplCreateImageHeader create_header,
    Cv_iplAllocateImageData allocate_data,
    Cv_iplDeallocate deallocate,
    Cv_iplCreateROI create_roi,
    Cv_iplCloneImage clone_image
    )

Makes OpenCV use IPL functions for allocating IplImage and IplROI structures.

Normally, the function is not called directly. Instead, a simple macro CV_TURN_ON_IPL_COMPATIBILITY() is used that calls cvSetIPLAllocators and passes there pointers to IPL allocation functions. :

...
CV_TURN_ON_IPL_COMPATIBILITY()
...

Parameters:

create_header pointer to a function, creating IPL image header.
allocate_data pointer to a function, allocating IPL image data.
deallocate pointer to a function, deallocating IPL image.
create_roi pointer to a function, creating IPL image ROI (i.e. Region of Interest).
clone_image pointer to a function, cloning an IPL image.
void
cvSetND(
    CvArr* arr,
    const int* idx,
    CvScalar value
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters:

arr Input array
idx Array of the element indices
value The assigned value
CvSetElem*
cvSetNew(CvSet* set_header)

Fast variant of cvSetAdd

void
cvSetReal1D(
    CvArr* arr,
    int idx0,
    double value
    )

Change a specific array element.

The functions assign a new value to a specific element of a single-channel array. If the array has multiple channels, a runtime error is raised. Note that the Set*D function can be used safely for both single-channel and multiple-channel arrays, though they are a bit slower.

In the case of a sparse array the functions create the node if it does not yet exist.

Parameters:

arr Input array
idx0 The first zero-based component of the element index
value The assigned value
void
cvSetReal2D(
    CvArr* arr,
    int idx0,
    int idx1,
    double value
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

void
cvSetReal3D(
    CvArr* arr,
    int idx0,
    int idx1,
    int idx2,
    double value
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

void
cvSetRealND(
    CvArr* arr,
    const int* idx,
    double value
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters:

arr Input array
idx Array of the element indices
value The assigned value
void
cvSetRemove(
    CvSet* set_header,
    int index
    )

Removes element from the set by its index

void
cvSetRemoveByPtr(
    CvSet* set_header,
    void* elem
    )

Removes set element given its pointer

void
cvSetSeqBlockSize(
    CvSeq* seq,
    int delta_elems
    )

Changes default size (granularity) of sequence blocks. The default size is ~1Kbyte

void
cvSetSeqReaderPos(
    CvSeqReader* reader,
    int index,
    int is_relative = 0
    )

Changes sequence reader position. It may seek to an absolute or to relative to the current position

void
cvSetZero(CvArr* arr)

Clears the array.

The function clears the array. In the case of dense arrays (CvMat, CvMatND or IplImage), cvZero(array) is equivalent to cvSet(array,cvScalarAll(0),0). In the case of sparse arrays all the elements are removed.

Parameters:

arr Array to be cleared
int
cvSliceLength(
    CvSlice slice,
    const CvSeq* seq
    )

Calculates length of sequence slice (with support of negative indices).

int
cvSolve(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    int method = 0
    )

Solves linear system (src1)*(dst) = (src2) (returns 0 if src1 is a singular and CV_LU method is used)

int
cvSolveCubic(
    const CvMat* coeffs,
    CvMat* roots
    )

Finds real roots of a cubic equation

void
cvSolvePoly(
    const CvMat* coeffs,
    CvMat* roots2,
    int maxiter = 20,
    int fig = 100
    )

Finds all real and complex roots of a polynomial equation

void
cvSplit(
    const CvArr* src,
    CvArr* dst0,
    CvArr* dst1,
    CvArr* dst2,
    CvArr* dst3
    )

Splits a multi-channel array into the set of single-channel arrays or extracts particular [color] plane

void
cvStartAppendToSeq(
    CvSeq* seq,
    CvSeqWriter* writer
    )

Initializes sequence writer. The new elements will be added to the end of sequence

void
cvStartNextStream(CvFileStorage* fs)

Starts the next stream.

The function finishes the currently written stream and starts the next stream. In the case of XML the file with multiple streams looks like this:

<opencv_storage>
<!-- stream #1 data -->
</opencv_storage>
<opencv_storage>
<!-- stream #2 data -->
</opencv_storage>
...

The YAML file will look like this:

%YAML 1.0
# stream #1 data
...
---
# stream #2 data

This is useful for concatenating files or for resuming the writing process.

Parameters:

fs File storage
void
cvStartReadRawData(
    const CvFileStorage* fs,
    const CvFileNode* src,
    CvSeqReader* reader
    )

Initializes the file node sequence reader.

The function initializes the sequence reader to read data from a file node. The initialized reader can be then passed to cvReadRawDataSlice.

Parameters:

fs File storage
src The file node (a sequence) to read numbers from
reader Pointer to the sequence reader
void
cvStartReadSeq(
    const CvSeq* seq,
    CvSeqReader* reader,
    int reverse = 0
    )

Initializes sequence reader. The sequence can be read in forward or backward direction

void
cvStartWriteSeq(
    int seq_flags,
    int header_size,
    int elem_size,
    CvMemStorage* storage,
    CvSeqWriter* writer
    )

Combination of cvCreateSeq and cvStartAppendToSeq

void
cvStartWriteStruct(
    CvFileStorage* fs,
    const char* name,
    int struct_flags,
    const char* type_name = NULL,
    CvAttrList attributes = cvAttrList()
    )

Starts writing a new structure.

The function starts writing a compound structure (collection) that can be a sequence or a map. After all the structure fields, which can be scalars or structures, are written, cvEndWriteStruct should be called. The function can be used to group some objects or to implement the write function for a some user object (see CvTypeInfo).

Parameters:

fs File storage
name Name of the written structure. The structure can be accessed by this name when the storage is read.
struct_flags

A combination one of the following values:

  • CV_NODE_SEQ the written structure is a sequence (see discussion of CvFileStorage ), that is, its elements do not have a name.
  • CV_NODE_MAP the written structure is a map (see discussion of CvFileStorage ), that is, all its elements have names. One and only one of the two above flags must be specified
  • CV_NODE_FLOW the optional flag that makes sense only for YAML streams. It means that the structure is written as a flow (not as a block), which is more compact. It is recommended to use this flag for structures or arrays whose elements are all scalars.
type_name Optional parameter - the object type name. In case of XML it is written as a type_id attribute of the structure opening tag. In the case of YAML it is written after a colon following the structure name (see the example in CvFileStorage description). In case of JSON it is written as a name/value pair. Mainly it is used with user objects. When the storage is read, the encoded type name is used to determine the object type (see CvTypeInfo and cvFindType ).
attributes This parameter is not used in the current implementation
int
cvStdErrReport(
    int status,
    const char* func_name,
    const char* err_msg,
    const char* file_name,
    int line,
    void* userdata
    )

Output to console(fprintf(stderr,…))

void
cvSub(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    const CvArr* mask = NULL
    )

dst(mask) = src1(mask) - src2(mask)

void
cvSubRS(
    const CvArr* src,
    CvScalar value,
    CvArr* dst,
    const CvArr* mask = NULL
    )

dst(mask) = value - src(mask)

void
cvSubS(
    const CvArr* src,
    CvScalar value,
    CvArr* dst,
    const CvArr* mask = NULL
    )

dst(mask) = src(mask) - value = src(mask) + (-value)

CvScalar
cvSum(const CvArr* arr)

Finds sum of array elements

void
cvSVBkSb(
    const CvArr* W,
    const CvArr* U,
    const CvArr* V,
    const CvArr* B,
    CvArr* X,
    int flags
    )

Performs Singular Value Back Substitution (solves A*X = B): flags must be the same as in cvSVD

void
cvSVD(
    CvArr* A,
    CvArr* W,
    CvArr* U = NULL,
    CvArr* V = NULL,
    int flags = 0
    )

Performs Singular Value Decomposition of a matrix

CvScalar
cvTrace(const CvArr* mat)

Calculates trace of the matrix (sum of elements on the main diagonal)

void
cvTransform(
    const CvArr* src,
    CvArr* dst,
    const CvMat* transmat,
    const CvMat* shiftvec = NULL
    )

Transforms each element of source array and stores resultant vectors in destination array

void
cvTranspose(
    const CvArr* src,
    CvArr* dst
    )

Tranposes matrix. Square matrices can be transposed in-place

CvSeq*
cvTreeToNodeSeq(
    const void* first,
    int header_size,
    CvMemStorage* storage
    )

Gathers pointers to all the sequences, accessible from the first, to the single sequence

CvTypeInfo*
cvTypeOf(const void* struct_ptr)

Returns the type of an object.

The function finds the type of a given object. It iterates through the list of registered types and calls the is_instance function/method for every type info structure with that object until one of them returns non-zero or until the whole list has been traversed. In the latter case, the function returns NULL.

Parameters:

struct_ptr The object pointer
void
cvUnregisterType(const char* type_name)

Unregisters the type.

The function unregisters a type with a specified name. If the name is unknown, it is possible to locate the type info by an instance of the type using cvTypeOf or by iterating the type list, starting from cvFirstType, and then calling cvUnregisterType(info->typeName).

Parameters:

type_name Name of an unregistered type
int
cvUseOptimized(int on_off)

Loads optimized functions from IPP, MKL etc. or switches back to pure C code

void
cvWrite(
    CvFileStorage* fs,
    const char* name,
    const void* ptr,
    CvAttrList attributes = cvAttrList()
    )

Writes an object to file storage.

The function writes an object to file storage. First, the appropriate type info is found using cvTypeOf. Then, the write method associated with the type info is called.

Attributes are used to customize the writing procedure. The standard types support the following attributes (all the dt attributes have the same format as in cvWriteRawData):

  1. CvSeq
    • header_dt description of user fields of the sequence header that follow CvSeq, or CvChain (if the sequence is a Freeman chain) or CvContour (if the sequence is a contour or point sequence)
    • dt description of the sequence elements.
    • recursive if the attribute is present and is not equal to “0” or “false”, the whole tree of sequences (contours) is stored.
  2. CvGraph
    • header_dt description of user fields of the graph header that follows CvGraph;
    • vertex_dt description of user fields of graph vertices
    • edge_dt description of user fields of graph edges (note that the edge weight is always written, so there is no need to specify it explicitly)

Below is the code that creates the YAML file shown in the CvFileStorage description:

#include "cxcore.h"

int main( int argc, char** argv )
{
    CvMat* mat = cvCreateMat( 3, 3, CV_32F );
    CvFileStorage* fs = cvOpenFileStorage( "example.yml", 0, CV_STORAGE_WRITE );

    cvSetIdentity( mat );
    cvWrite( fs, "A", mat, cvAttrList(0,0) );

    cvReleaseFileStorage( &fs );
    cvReleaseMat( &mat );
    return 0;
}

Parameters:

fs File storage
name Name of the written object. Should be NULL if and only if the parent structure is a sequence.
ptr Pointer to the object
attributes The attributes of the object. They are specific for each particular type (see the discussion below).
void
cvWriteComment(
    CvFileStorage* fs,
    const char* comment,
    int eol_comment
    )

Writes a comment.

The function writes a comment into file storage. The comments are skipped when the storage is read.

Parameters:

fs File storage
comment The written comment, single-line or multi-line
eol_comment If non-zero, the function tries to put the comment at the end of current line. If the flag is zero, if the comment is multi-line, or if it does not fit at the end of the current line, the comment starts a new line.
void
cvWriteFileNode(
    CvFileStorage* fs,
    const char* new_node_name,
    const CvFileNode* node,
    int embed
    )

Writes a file node to another file storage.

The function writes a copy of a file node to file storage. Possible applications of the function are merging several file storages into one and conversion between XML, YAML and JSON formats.

Parameters:

fs Destination file storage
new_node_name New name of the file node in the destination file storage. To keep the existing name, use cvcvGetFileNodeName
node The written node
embed If the written node is a collection and this parameter is not zero, no extra level of hierarchy is created. Instead, all the elements of node are written into the currently written structure. Of course, map elements can only be embedded into another map, and sequence elements can only be embedded into another sequence.
void
cvWriteInt(
    CvFileStorage* fs,
    const char* name,
    int value
    )

Writes an integer value.

The function writes a single integer value (with or without a name) to the file storage.

Parameters:

fs File storage
name Name of the written value. Should be NULL if and only if the parent structure is a sequence.
value The written value
void
cvWriteRawData(
    CvFileStorage* fs,
    const void* src,
    int len,
    const char* dt
    )

Writes multiple numbers.

The function writes an array, whose elements consist of single or multiple numbers. The function call can be replaced with a loop containing a few cvWriteInt and cvWriteReal calls, but a single call is more efficient. Note that because none of the elements have a name, they should be written to a sequence rather than a map.

Parameters:

fs File storage
src Pointer to the written array
len Number of the array elements to write
dt Specification of each array element, see format specification
void
cvWriteRawDataBase64(
    CvFileStorage* fs,
    const void* src,
    int len,
    const char* dt
    )

Writes multiple numbers in Base64.

If either CV_STORAGE_WRITE_BASE64 or cv::FileStorage::WRITE_BASE64 is used, this function will be the same as cvWriteRawData. If neither, the main difference is that it outputs a sequence in Base64 encoding rather than in plain text.

This function can only be used to write a sequence with a type “binary”.

Consider the following two examples where their output is the same:

CvFileStorage* fs = cvOpenFileStorage( "example.xml", 0, CV_STORAGE_WRITE );
// both CV_NODE_SEQ and "binary" are necessary.
cvStartWriteStruct(fs, "rawdata", CV_NODE_SEQ | CV_NODE_FLOW, "binary");
cvWriteRawDataBase64(fs, rawdata.data(), static_cast<int>(rawdata.size()), "i");
cvEndWriteStruct(fs);
cvReleaseFileStorage( &fs );

and

CvFileStorage* fs = cvOpenFileStorage( "example.xml", 0, CV_STORAGE_WRITE_BASE64);
// parameter, typename "binary" could be omitted.
cvStartWriteStruct(fs, "rawdata", CV_NODE_SEQ | CV_NODE_FLOW);
cvWriteRawData(fs, rawdata.data(), static_cast<int>(rawdata.size()), "i");
cvEndWriteStruct(fs);
cvReleaseFileStorage( &fs );

Parameters:

fs File storage
src Pointer to the written array
len Number of the array elements to write
dt Specification of each array element, see format specification
void
cvWriteReal(
    CvFileStorage* fs,
    const char* name,
    double value
    )

Writes a floating-point value.

The function writes a single floating-point value (with or without a name) to file storage. Special values are encoded as follows: NaN (Not A Number) as .NaN, infinity as +.Inf or -.Inf.

The following example shows how to use the low-level writing functions to store custom structures, such as termination criteria, without registering a new type. :

void write_termcriteria( CvFileStorage* fs, const char* struct_name,
                         CvTermCriteria* termcrit )
{
    cvStartWriteStruct( fs, struct_name, CV_NODE_MAP, NULL, cvAttrList(0,0));
    cvWriteComment( fs, "termination criteria", 1 ); // just a description
    if( termcrit->type & CV_TERMCRIT_ITER )
        cvWriteInteger( fs, "max_iterations", termcrit->max_iter );
    if( termcrit->type & CV_TERMCRIT_EPS )
        cvWriteReal( fs, "accuracy", termcrit->epsilon );
    cvEndWriteStruct( fs );
}

Parameters:

fs File storage
name Name of the written value. Should be NULL if and only if the parent structure is a sequence.
value The written value
void
cvWriteString(
    CvFileStorage* fs,
    const char* name,
    const char* str,
    int quote = 0
    )

Writes a text string.

The function writes a text string to file storage.

Parameters:

fs File storage
name Name of the written string . Should be NULL if and only if the parent structure is a sequence.
str The written text string
quote If non-zero, the written string is put in quotes, regardless of whether they are required. Otherwise, if the flag is zero, quotes are used only when they are required (e.g. when the string starts with a digit or contains spaces).
void
cvXor(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    const CvArr* mask = NULL
    )

dst(idx) = src1(idx) ^ src2(idx)

void
cvXorS(
    const CvArr* src,
    CvScalar value,
    CvArr* dst,
    const CvArr* mask = NULL
    )

dst(idx) = src(idx) ^ value

CvAttrList
cvAttrList(
    const char** attr = NULL,
    CvAttrList* next = NULL
    )

initializes CvAttrList structure

CvMat
cvMat(
    int rows,
    int cols,
    int type,
    void* data = NULL
    )

Inline constructor. No data is allocated internally!!! (Use together with cvCreateData, or use cvCreateMat instead to get a matrix with allocated data):

double
cvmGet(
    const CvMat* mat,
    int row,
    int col
    )

Returns the particular element of single-channel floating-point matrix.

The function is a fast replacement for cvGetReal2D in the case of single-channel floating-point matrices. It is faster because it is inline, it does fewer checks for array type and array element type, and it checks for the row and column ranges only in debug mode.

Parameters:

mat Input matrix
row The zero-based index of row
col The zero-based index of column
void
cvmSet(
    CvMat* mat,
    int row,
    int col,
    double value
    )

Sets a specific element of a single-channel floating-point matrix.

The function is a fast replacement for cvSetReal2D in the case of single-channel floating-point matrices. It is faster because it is inline, it does fewer checks for array type and array element type, and it checks for the row and column ranges only in debug mode.

Parameters:

mat The matrix
row The zero-based index of row
col The zero-based index of column
value The new value of the matrix element
CvPoint
cvPoint(
    int x,
    int y
    )

constructs CvPoint structure.

CvPoint2D32f
cvPoint2D32f(
    double x,
    double y
    )

constructs CvPoint2D32f structure.

CvPoint2D64f
cvPoint2D64f(
    double x,
    double y
    )

constructs CvPoint2D64f structure.

CvPoint3D32f
cvPoint3D32f(
    double x,
    double y,
    double z
    )

constructs CvPoint3D32f structure.

CvPoint3D64f
cvPoint3D64f(
    double x,
    double y,
    double z
    )

constructs CvPoint3D64f structure.

CvPoint
cvPointFrom32f(CvPoint2D32f point)

converts CvPoint2D32f to CvPoint.

CvPoint2D32f
cvPointTo32f(CvPoint point)

converts CvPoint to CvPoint2D32f.

unsigned
cvRandInt(CvRNG* rng)

Returns a 32-bit unsigned integer and updates RNG.

The function returns a uniformly-distributed random 32-bit unsigned integer and updates the RNG state. It is similar to the rand() function from the C runtime library, except that OpenCV functions always generates a 32-bit random number, regardless of the platform.

Parameters:

rng CvRNG state initialized by cvRNG.
double
cvRandReal(CvRNG* rng)

Returns a floating-point random number and updates RNG.

The function returns a uniformly-distributed random floating-point number between 0 and 1 (1 is not included).

Parameters:

rng RNG state initialized by cvRNG
CvRect
cvRect(
    int x,
    int y,
    int width,
    int height
    )

constructs CvRect structure.

CvRNG
cvRNG(int64 seed = -1)

Initializes a random number generator state.

The function initializes a random number generator and returns the state. The pointer to the state can be then passed to the cvRandInt, cvRandReal and cvRandArr functions. In the current implementation a multiply-with-carry generator is used.

Parameters:

seed 64-bit value used to initiate a random sequence

See also:

the C++ class RNG replaced CvRNG.

CvSize
cvSize(
    int width,
    int height
    )

constructs CvSize structure.

CvSize2D32f
cvSize2D32f(
    double width,
    double height
    )

constructs CvSize2D32f structure.

Macros

#define CV_ASSERT(Condition)

Runtime assertion macro

#define CV_CALL(Func)

CV_CALL macro calls CV (or IPL) function, checks error status and signals a error if the function failed. Useful in “parent node” error procesing mode

#define CV_CHECK()

CV_CHECK macro checks error status after CV (or IPL) function call. If error detected, control will be transferred to the exit label.

#define CV_COVAR_COLS

flag for cvCalcCovarMatrix, all the input vectors are stored in a single matrix, as its columns

#define CV_COVAR_NORMAL

flag for cvCalcCovarMatrix, [v1-avg, v2-avg,…] * transpose([v1-avg,v2-avg,…])

#define CV_COVAR_ROWS

flag for cvCalcCovarMatrix, all the input vectors are stored in a single matrix, as its rows

#define CV_COVAR_SCALE

flag for cvCalcCovarMatrix, scale the covariance matrix coefficients by number of the vectors

#define CV_COVAR_SCRAMBLED

flag for cvCalcCovarMatrix, transpose([v1-avg, v2-avg,…]) * [v1-avg,v2-avg,…]

#define CV_COVAR_USE_AVG

flag for cvCalcCovarMatrix, do not calc average (i.e. mean vector) - use the input vector instead (useful for calculating covariance matrix by parts)

#define CV_DXT_MUL_CONJ

conjugate the second argument of cvMulSpectrums

#define CV_DXT_ROWS

transform each row individually

#define CV_DXT_SCALE

divide result by size of array

#define CV_ERROR( \
    Code, \
    Msg \
    )

CV_ERROR macro unconditionally raises error with passed code and message. After raising error, control will be transferred to the exit label.

#define CV_FUNCNAME(Name)

CV_FUNCNAME macro defines icvFuncName constant which is used by CV_ERROR macro

#define CV_GRAPH_FIELDS()

Graph is “derived” from the set (this is set a of vertices) and includes another set (edges)

#define CV_GRAPH_FLAG_ORIENTED

flags for graphs

#define CV_GRAPH_ITEM_VISITED_FLAG

flags for graph vertices and edges

#define CV_HIST_RANGES_FLAG

indicates whether bin ranges are set already or not

#define CV_HIST_UNIFORM

should be used as a parameter only, it turns to CV_HIST_UNIFORM_FLAG of hist->type

#define CV_IABS(a)

absolute value without jumps

#define CV_IMAGE_ELEM( \
    image, \
    elemtype, \
    row, \
    col \
    )

get reference to pixel at (col,row), for multi-channel images (col) should be multiplied by number of channels

#define CV_IMIN( \
    a, \
    b \
    )

min & max without jumps

#define CV_IS_SEQ_INDEX(seq)

flag checking

#define CV_IS_SEQ_POINT_SET(seq)

type checking macros

#define CV_IS_SET_ELEM(ptr)

Checks whether the element pointed by ptr belongs to a set or not

#define CV_KMEANS_USE_INITIAL_LABELS

The function implements the K-means algorithm for clustering an array of sample vectors in a specified number of classes

#define CV_NEXT_GRAPH_EDGE( \
    edge, \
    vertex \
    )

Return next graph edge for given vertex:

#define CV_NEXT_SEQ_ELEM( \
    elem_size, \
    reader \
    )

Move reader position forward:

#define CV_NODE_FLOW

file node flags Used only for writing structures in YAML format.

#define CV_NODE_REF

not used

#define CV_PREV_SEQ_ELEM( \
    elem_size, \
    reader \
    )

Move reader position backward:

#define CV_READ_SEQ_ELEM( \
    elem, \
    reader \
    )

Read element and move read position forward:

#define CV_REV_READ_SEQ_ELEM( \
    elem, \
    reader \
    )

Read element and move read position backward:

#define CV_SEQUENCE_FIELDS()

Read/Write sequence. Elements can be dynamically inserted to or deleted from the sequence.Pointer to the first sequence block.

#define CV_SEQ_CHAIN

chain-coded curves

#define CV_SEQ_CONNECTED_COMP

sequence of the connected components

#define CV_SEQ_ELTYPE_CODE

freeman code: 0..7

#define CV_SEQ_ELTYPE_CONNECTED_COMP

connected component

#define CV_SEQ_ELTYPE_GRAPH_EDGE

&next_o, &next_d, &vtx_o, &vtx_d

#define CV_SEQ_ELTYPE_GRAPH_VERTEX

first_edge, &(x,y)

#define CV_SEQ_ELTYPE_INDEX

#(x,y)

#define CV_SEQ_ELTYPE_POINT

(x,y)

#define CV_SEQ_ELTYPE_POINT3D

(x,y,z)

#define CV_SEQ_ELTYPE_PPOINT

&(x,y)

#define CV_SEQ_ELTYPE_TRIAN_ATR

vertex of the binary tree

#define CV_SEQ_FLAG_CLOSED

flags for curves

#define CV_SEQ_INDEX

sequence of the integer numbers

#define CV_SEQ_KIND_GENERIC

types of sequences

#define CV_SEQ_KIND_GRAPH

types of sparse sequences (sets)

#define CV_SEQ_POINT_SET

point sets

#define CV_SEQ_POLYGON_TREE

binary tree for the contour

#define CV_SEQ_READER_FIELDS()

pointer to previous element

#define CV_SEQ_WRITER_FIELDS()

pointer to the end of block

#define CV_SET_ELEM_FIELDS(elem_type)

Set Order is not preserved. There can be gaps between sequence elements. After the element has been inserted it stays in the same place all the time. The MSB(most-significant or sign bit) of the first field (flags) is 0 iff the element exists.

#define CV_STORAGE_READ

Storage flags:

#define CV_TREE_NODE_FIELDS(node_type)

2nd next sequence.

#define CV_WRITE_SEQ_ELEM_VAR( \
    elem_ptr, \
    writer \
    )

Add element to sequence:

#define IPL_BORDER_REFLECT_101

extra border mode

#define IPL_DEPTH_64F

for storing double-precision floating point data in IplImage ‘s

#define cvGetGraphVtx( \
    graph, \
    idx \
    )

Retrieves graph vertex by given index

#define cvGraphEdgeIdx( \
    graph, \
    edge \
    )

Retrieves index of a graph edge given its pointer

#define cvGraphVtxIdx( \
    graph, \
    vtx \
    )

Retrieves index of a graph vertex given its pointer

#define cvMatMulAdd( \
    src1, \
    src2, \
    src3, \
    dst \
    )

Matrix transform: dst = A*B + C, C is optional