Feature Detection

Overview

// classes

class cv::cuda::CornernessCriteria;
class cv::cuda::CornersDetector;

// global functions

Ptr<CornersDetector>
cv::cuda::createGoodFeaturesToTrackDetector(
    int srcType,
    int maxCorners = 1000,
    double qualityLevel = 0.01,
    double minDistance = 0.0,
    int blockSize = 3,
    bool useHarrisDetector = false,
    double harrisK = 0.04
    );

Ptr<CornernessCriteria>
cv::cuda::createHarrisCorner(
    int srcType,
    int blockSize,
    int ksize,
    double k,
    int borderType = BORDER_REFLECT101
    );

Ptr<CornernessCriteria>
cv::cuda::createMinEigenValCorner(
    int srcType,
    int blockSize,
    int ksize,
    int borderType = BORDER_REFLECT101
    );

Detailed Documentation

Global Functions

Ptr<CornersDetector>
cv::cuda::createGoodFeaturesToTrackDetector(
    int srcType,
    int maxCorners = 1000,
    double qualityLevel = 0.01,
    double minDistance = 0.0,
    int blockSize = 3,
    bool useHarrisDetector = false,
    double harrisK = 0.04
    )

Creates implementation for cuda::CornersDetector.

Parameters:

srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
maxCorners Maximum number of corners to return. If there are more corners than are found, the strongest of them is returned.
qualityLevel Parameter characterizing the minimal accepted quality of image corners. The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue (see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the quality measure less than the product are rejected. For example, if the best corner has the quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure less than 15 are rejected.
minDistance Minimum possible Euclidean distance between the returned corners.
blockSize Size of an average block for computing a derivative covariation matrix over each pixel neighborhood. See cornerEigenValsAndVecs .
useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris) or cornerMinEigenVal.
harrisK Free parameter of the Harris detector.
Ptr<CornernessCriteria>
cv::cuda::createHarrisCorner(
    int srcType,
    int blockSize,
    int ksize,
    double k,
    int borderType = BORDER_REFLECT101
    )

Creates implementation for Harris cornerness criteria.

Parameters:

srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
blockSize Neighborhood size.
ksize Aperture parameter for the Sobel operator.
k Harris detector free parameter.
borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are supported for now.

See also:

cornerHarris

Ptr<CornernessCriteria>
cv::cuda::createMinEigenValCorner(
    int srcType,
    int blockSize,
    int ksize,
    int borderType = BORDER_REFLECT101
    )

Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the cornerness criteria).

Parameters:

srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
blockSize Neighborhood size.
ksize Aperture parameter for the Sobel operator.
borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are supported for now.

See also:

cornerMinEigenVal