Feature Detection
Overview
// classes class cv::cuda::CornernessCriteria; class cv::cuda::CornersDetector; // global functions Ptr<CornersDetector> cv::cuda::createGoodFeaturesToTrackDetector( int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0, int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04 ); Ptr<CornernessCriteria> cv::cuda::createHarrisCorner( int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101 ); Ptr<CornernessCriteria> cv::cuda::createMinEigenValCorner( int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101 );
Detailed Documentation
Global Functions
Ptr<CornersDetector> cv::cuda::createGoodFeaturesToTrackDetector( int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0, int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04 )
Creates implementation for cuda::CornersDetector.
Parameters:
srcType | Input source type. Only CV_8UC1 and CV_32FC1 are supported for now. |
maxCorners | Maximum number of corners to return. If there are more corners than are found, the strongest of them is returned. |
qualityLevel | Parameter characterizing the minimal accepted quality of image corners. The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue (see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the quality measure less than the product are rejected. For example, if the best corner has the quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure less than 15 are rejected. |
minDistance | Minimum possible Euclidean distance between the returned corners. |
blockSize | Size of an average block for computing a derivative covariation matrix over each pixel neighborhood. See cornerEigenValsAndVecs . |
useHarrisDetector | Parameter indicating whether to use a Harris detector (see cornerHarris) or cornerMinEigenVal. |
harrisK | Free parameter of the Harris detector. |
Ptr<CornernessCriteria> cv::cuda::createHarrisCorner( int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101 )
Creates implementation for Harris cornerness criteria.
Parameters:
srcType | Input source type. Only CV_8UC1 and CV_32FC1 are supported for now. |
blockSize | Neighborhood size. |
ksize | Aperture parameter for the Sobel operator. |
k | Harris detector free parameter. |
borderType | Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are supported for now. |
See also:
Ptr<CornernessCriteria> cv::cuda::createMinEigenValCorner( int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101 )
Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the cornerness criteria).
Parameters:
srcType | Input source type. Only CV_8UC1 and CV_32FC1 are supported for now. |
blockSize | Neighborhood size. |
ksize | Aperture parameter for the Sobel operator. |
borderType | Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are supported for now. |
See also: