Remapping

Goal

In this tutorial you will learn how to:

  1. Use the OpenCV function cv::remap to implement simple remapping routines.

Theory

What is remapping?

  • It is the process of taking pixels from one place in the image and locating them in another position in a new image.

  • To accomplish the mapping process, it might be necessary to do some interpolation for non-integer pixel locations, since there will not always be a one-to-one-pixel correspondence between source and destination images.

  • We can express the remap for every pixel location \((x,y)\) as:

    \[g(x,y) = f ( h(x,y) )\]

    where \(g()\) is the remapped image, \(f()\) the source image and \(h(x,y)\) is the mapping function that operates on \((x,y)\).

  • Let’s think in a quick example. Imagine that we have an image \(I\) and, say, we want to do a remap such that:

    \[h(x,y) = (I.cols - x, y )\]

    What would happen? It is easily seen that the image would flip in the \(x\) direction. For instance, consider the input image:

    _images/Remap_Tutorial_Theory_0.jpg

    observe how the red circle changes positions with respect to x (considering \(x\) the horizontal direction):

    _images/Remap_Tutorial_Theory_1.jpg
  • In OpenCV, the function cv::remap offers a simple remapping implementation.

Code

  1. What does this program do?

    • Loads an image
    • Each second, apply 1 of 4 different remapping processes to the image and display them indefinitely in a window.
    • Wait for the user to exit the program
  2. The tutorial code’s is shown lines below. You can also download it from here

    #include "opencv2/imgcodecs.hpp"
    #include "opencv2/highgui.hpp"
    #include "opencv2/imgproc.hpp"
    #include <iostream>
    
    using namespace cv;
    
    Mat src, dst;
    Mat map_x, map_y;
    const char* remap_window = "Remap demo";
    int ind = 0;
    
    void update_map( void );
    
    int main( int, char** argv )
    {
      src = imread( argv[1], IMREAD_COLOR );
    
      dst.create( src.size(), src.type() );
      map_x.create( src.size(), CV_32FC1 );
      map_y.create( src.size(), CV_32FC1 );
    
      namedWindow( remap_window, WINDOW_AUTOSIZE );
    
      for(;;)
      {
        char c = (char)waitKey( 1000 );
    
        if( c == 27 )
          { break; }
    
        update_map();
        remap( src, dst, map_x, map_y, INTER_LINEAR, BORDER_CONSTANT, Scalar(0, 0, 0) );
    
        // Display results
        imshow( remap_window, dst );
      }
      return 0;
    }
    
    void update_map( void )
    {
      ind = ind%4;
    
      for( int j = 0; j < src.rows; j++ )
        { for( int i = 0; i < src.cols; i++ )
         {
               switch( ind )
             {
             case 0:
               if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
                     {
                   map_x.at<float>(j,i) = 2*( i - src.cols*0.25f ) + 0.5f ;
                   map_y.at<float>(j,i) = 2*( j - src.rows*0.25f ) + 0.5f ;
                  }
               else
             { map_x.at<float>(j,i) = 0 ;
                   map_y.at<float>(j,i) = 0 ;
                     }
                       break;
             case 1:
                   map_x.at<float>(j,i) = (float)i ;
                   map_y.at<float>(j,i) = (float)(src.rows - j) ;
               break;
                 case 2:
                   map_x.at<float>(j,i) = (float)(src.cols - i) ;
                   map_y.at<float>(j,i) = (float)j ;
               break;
                 case 3:
                   map_x.at<float>(j,i) = (float)(src.cols - i) ;
                   map_y.at<float>(j,i) = (float)(src.rows - j) ;
               break;
                 } // end of switch
         }
        }
      ind++;
    }
    

Explanation

  1. Create some variables we will use:

    Mat src, dst;
    Mat map_x, map_y;
    char* remap_window = "Remap demo";
    int ind = 0;
    
  2. Load an image:

    src = imread( argv[1], 1 );
    
  3. Create the destination image and the two mapping matrices (for x and y )

    dst.create( src.size(), src.type() );
    map_x.create( src.size(), CV_32FC1 );
    map_y.create( src.size(), CV_32FC1 );
    
  4. Create a window to display results

    namedWindow( remap_window, WINDOW_AUTOSIZE );
    
  5. Establish a loop. Each 1000 ms we update our mapping matrices (mat_x and mat_y) and apply them to our source image:

    while( true )
    {
      char c = (char)waitKey( 1000 );
    
      if( c == 27 )
        { break; }
    
      update_map();
      remap( src, dst, map_x, map_y, INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
    
      imshow( remap_window, dst );
    }
    

    The function that applies the remapping is cv::remap. We give the following arguments:

    • src : Source image
    • dst : Destination image of same size as src
    • map_x : The mapping function in the x direction. It is equivalent to the first component of \(h(i,j)\)
    • map_y : Same as above, but in y direction. Note that map_y and map_x are both of the same size as src
    • INTER_LINEAR : The type of interpolation to use for non-integer pixels. This is by default.
    • BORDER_CONSTANT : Default

    How do we update our mapping matrices mat_x and mat_y? Go on reading:

  6. Updating the mapping matrices: We are going to perform 4 different mappings:

    1. Reduce the picture to half its size and will display it in the middle:

      \[h(i,j) = ( 2*i - src.cols/2 + 0.5, 2*j - src.rows/2 + 0.5)\]

      for all pairs \((i,j)\) such that: \(\dfrac{src.cols}{4}<i<\dfrac{3 \cdot src.cols}{4}\) and \(\dfrac{src.rows}{4}<j<\dfrac{3 \cdot src.rows}{4}\)

    2. Turn the image upside down: \(h( i, j ) = (i, src.rows - j)\)

    3. Reflect the image from left to right: \(h(i,j) = ( src.cols - i, j )\)

    4. Combination of b and c: \(h(i,j) = ( src.cols - i, src.rows - j )\)

This is expressed in the following snippet. Here, map_x represents the first coordinate of h(i,j) and map_y the second coordinate.

for( int j = 0; j < src.rows; j++ )
{ for( int i = 0; i < src.cols; i++ )
{
      switch( ind )
  {
    case 0:
      if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
            {
          map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ;
          map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ;
         }
      else
    { map_x.at<float>(j,i) = 0 ;
          map_y.at<float>(j,i) = 0 ;
            }
              break;
    case 1:
          map_x.at<float>(j,i) = i ;
          map_y.at<float>(j,i) = src.rows - j ;
      break;
        case 2:
          map_x.at<float>(j,i) = src.cols - i ;
          map_y.at<float>(j,i) = j ;
      break;
        case 3:
          map_x.at<float>(j,i) = src.cols - i ;
          map_y.at<float>(j,i) = src.rows - j ;
      break;
      } // end of switch
}
  }
 ind++;
}

Result

  1. After compiling the code above, you can execute it giving as argument an image path. For instance, by using the following image:

    _images/Remap_Tutorial_Original_Image.jpg
  2. This is the result of reducing it to half the size and centering it:

    _images/Remap_Tutorial_Result_0.jpg
  3. Turning it upside down:

    _images/Remap_Tutorial_Result_1.jpg
  4. Reflecting it in the x direction:

    _images/Remap_Tutorial_Result_2.jpg
  5. Reflecting it in both directions:

    _images/Remap_Tutorial_Result_3.jpg