class cv::ORB
Overview
Class implementing the ORB (oriented BRIEF) keypoint detector and descriptor extractor. Moreā¦
#include <features2d.hpp> class ORB: public cv::Feature2D { public: // enums enum { kBytes = 32, HARRIS_SCORE =0, FAST_SCORE =1, }; // methods static Ptr<ORB> create( int nfeatures = 500, float scaleFactor = 1.2f, int nlevels = 8, int edgeThreshold = 31, int firstLevel = 0, int WTA_K = 2, int scoreType = ORB::HARRIS_SCORE, int patchSize = 31, int fastThreshold = 20 ); virtual int getEdgeThreshold() const = 0; virtual int getFastThreshold() const = 0; virtual int getFirstLevel() const = 0; virtual int getMaxFeatures() const = 0; virtual int getNLevels() const = 0; virtual int getPatchSize() const = 0; virtual double getScaleFactor() const = 0; virtual int getScoreType() const = 0; virtual int getWTA_K() const = 0; virtual void setEdgeThreshold(int edgeThreshold) = 0; virtual void setFastThreshold(int fastThreshold) = 0; virtual void setFirstLevel(int firstLevel) = 0; virtual void setMaxFeatures(int maxFeatures) = 0; virtual void setNLevels(int nlevels) = 0; virtual void setPatchSize(int patchSize) = 0; virtual void setScaleFactor(double scaleFactor) = 0; virtual void setScoreType(int scoreType) = 0; virtual void setWTA_K(int wta_k) = 0; }; // direct descendants class ORB;
Inherited Members
public: // methods virtual void clear(); virtual bool empty() const; virtual String getDefaultName() const; virtual void read(const FileNode& fn); virtual void save(const String& filename) const; virtual void write(FileStorage& fs) const; template <typename _Tp> static Ptr<_Tp> load( const String& filename, const String& objname = String() ); template <typename _Tp> static Ptr<_Tp> loadFromString( const String& strModel, const String& objname = String() ); template <typename _Tp> static Ptr<_Tp> read(const FileNode& fn); virtual void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ); virtual void compute( InputArrayOfArrays images, std::vector<std::vector<KeyPoint>>& keypoints, OutputArrayOfArrays descriptors ); virtual int defaultNorm() const; virtual int descriptorSize() const; virtual int descriptorType() const; virtual void detect( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask = noArray() ); virtual void detect( InputArrayOfArrays images, std::vector<std::vector<KeyPoint>>& keypoints, InputArrayOfArrays masks = noArray() ); virtual void detectAndCompute( InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints, OutputArray descriptors, bool useProvidedKeypoints = false ); virtual bool empty() const; void read(const String& fileName); virtual void read(const FileNode& fn); void write(const String& fileName) const; virtual void write(FileStorage& fs) const; protected: // methods void writeFormat(FileStorage& fs) const;
Detailed Documentation
Class implementing the ORB (oriented BRIEF) keypoint detector and descriptor extractor.
described in [72]. The algorithm uses FAST in pyramids to detect stable keypoints, selects the strongest features using FAST or Harris response, finds their orientation using first-order moments and computes the descriptors using BRIEF (where the coordinates of random point pairs (or k-tuples) are rotated according to the measured orientation).
Methods
static Ptr<ORB> create( int nfeatures = 500, float scaleFactor = 1.2f, int nlevels = 8, int edgeThreshold = 31, int firstLevel = 0, int WTA_K = 2, int scoreType = ORB::HARRIS_SCORE, int patchSize = 31, int fastThreshold = 20 )
The ORB constructor.
Parameters:
nfeatures | The maximum number of features to retain. |
scaleFactor | Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor will mean that to cover certain scale range you will need more pyramid levels and so the speed will suffer. |
nlevels | The number of pyramid levels. The smallest level will have linear size equal to input_image_linear_size/pow(scaleFactor, nlevels). |
edgeThreshold | This is size of the border where the features are not detected. It should roughly match the patchSize parameter. |
firstLevel | It should be 0 in the current implementation. |
WTA_K | The number of points that produce each element of the oriented BRIEF descriptor. The default value 2 means the BRIEF where we take a random point pair and compare their brightnesses, so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3 random points (of course, those point coordinates are random, but they are generated from the pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such output will occupy 2 bits, and therefore it will need a special variant of Hamming distance, denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3). |
scoreType | The default HARRIS_SCORE means that Harris algorithm is used to rank features (the score is written to KeyPoint::score and is used to retain best nfeatures features); FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints, but it is a little faster to compute. |
patchSize | size of the patch used by the oriented BRIEF descriptor. Of course, on smaller pyramid layers the perceived image area covered by a feature will be larger. |
fastThreshold |