class cv::SimpleBlobDetector
Overview
Class for extracting blobs from an image. : Moreā¦
#include <features2d.hpp> class SimpleBlobDetector: public cv::Feature2D { public: // structs struct Params; // methods static Ptr<SimpleBlobDetector> create(const SimpleBlobDetector::Params& parameters = SimpleBlobDetector::Params()); };
Inherited Members
public: // methods virtual void clear(); virtual bool empty() const; virtual String getDefaultName() const; virtual void read(const FileNode& fn); virtual void save(const String& filename) const; virtual void write(FileStorage& fs) const; template <typename _Tp> static Ptr<_Tp> load( const String& filename, const String& objname = String() ); template <typename _Tp> static Ptr<_Tp> loadFromString( const String& strModel, const String& objname = String() ); template <typename _Tp> static Ptr<_Tp> read(const FileNode& fn); virtual void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ); virtual void compute( InputArrayOfArrays images, std::vector<std::vector<KeyPoint>>& keypoints, OutputArrayOfArrays descriptors ); virtual int defaultNorm() const; virtual int descriptorSize() const; virtual int descriptorType() const; virtual void detect( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask = noArray() ); virtual void detect( InputArrayOfArrays images, std::vector<std::vector<KeyPoint>>& keypoints, InputArrayOfArrays masks = noArray() ); virtual void detectAndCompute( InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints, OutputArray descriptors, bool useProvidedKeypoints = false ); virtual bool empty() const; void read(const String& fileName); virtual void read(const FileNode& fn); void write(const String& fileName) const; virtual void write(FileStorage& fs) const; protected: // methods void writeFormat(FileStorage& fs) const;
Detailed Documentation
Class for extracting blobs from an image. :
The class implements a simple algorithm for extracting blobs from an image:
- Convert the source image to binary images by applying thresholding with several thresholds from minThreshold (inclusive) to maxThreshold (exclusive) with distance thresholdStep between neighboring thresholds.
- Extract connected components from every binary image by findContours and calculate their centers.
- Group centers from several binary images by their coordinates. Close centers form one group that corresponds to one blob, which is controlled by the minDistBetweenBlobs parameter.
- From the groups, estimate final centers of blobs and their radiuses and return as locations and sizes of keypoints.
This class performs several filtrations of returned blobs. You should set filterBy* to true/false to turn on/off corresponding filtration. Available filtrations:
- By color. This filter compares the intensity of a binary image at the center of a blob to blobColor. If they differ, the blob is filtered out. Use blobColor = 0 to extract dark blobs and blobColor = 255 to extract light blobs.
- By area. Extracted blobs have an area between minArea (inclusive) and maxArea (exclusive).
- By circularity. Extracted blobs have circularity (\(\frac{4*\pi*Area}{perimeter * perimeter}\)) between minCircularity (inclusive) and maxCircularity (exclusive).
- By ratio of the minimum inertia to maximum inertia. Extracted blobs have this ratio between minInertiaRatio (inclusive) and maxInertiaRatio (exclusive).
- By convexity. Extracted blobs have convexity (area / area of blob convex hull) between minConvexity (inclusive) and maxConvexity (exclusive).
Default values of parameters are tuned to extract dark circular blobs.