class cv::ml::Boost
Overview
Boosted tree classifier derived from DTrees. Moreā¦
#include <ml.hpp> class Boost: public cv::ml::DTrees { public: // enums enum Types; // methods virtual int getBoostType() const = 0; virtual int getWeakCount() const = 0; virtual double getWeightTrimRate() const = 0; virtual void setBoostType(int val) = 0; virtual void setWeakCount(int val) = 0; virtual void setWeightTrimRate(double val) = 0; static Ptr<Boost> create(); static Ptr<Boost> load( const String& filepath, const String& nodeName = String() ); };
Inherited Members
public: // enums enum Flags; enum Flags; // classes class Node; class Split; // methods virtual void clear(); virtual bool empty() const; virtual String getDefaultName() const; virtual void read(const FileNode& fn); virtual void save(const String& filename) const; virtual void write(FileStorage& fs) const; template <typename _Tp> static Ptr<_Tp> load( const String& filename, const String& objname = String() ); template <typename _Tp> static Ptr<_Tp> loadFromString( const String& strModel, const String& objname = String() ); template <typename _Tp> static Ptr<_Tp> read(const FileNode& fn); virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const; virtual bool empty() const; virtual int getVarCount() const = 0; virtual bool isClassifier() const = 0; virtual bool isTrained() const = 0; virtual float predict( InputArray samples, OutputArray results = noArray(), int flags = 0 ) const = 0; virtual bool train( const Ptr<TrainData>& trainData, int flags = 0 ); virtual bool train( InputArray samples, int layout, InputArray responses ); template <typename _Tp> static Ptr<_Tp> train( const Ptr<TrainData>& data, int flags = 0 ); virtual int getCVFolds() const = 0; virtual int getMaxCategories() const = 0; virtual int getMaxDepth() const = 0; virtual int getMinSampleCount() const = 0; virtual const std::vector<Node>& getNodes() const = 0; virtual cv::Mat getPriors() const = 0; virtual float getRegressionAccuracy() const = 0; virtual const std::vector<int>& getRoots() const = 0; virtual const std::vector<Split>& getSplits() const = 0; virtual const std::vector<int>& getSubsets() const = 0; virtual bool getTruncatePrunedTree() const = 0; virtual bool getUse1SERule() const = 0; virtual bool getUseSurrogates() const = 0; virtual void setCVFolds(int val) = 0; virtual void setMaxCategories(int val) = 0; virtual void setMaxDepth(int val) = 0; virtual void setMinSampleCount(int val) = 0; virtual void setPriors(const cv::Mat& val) = 0; virtual void setRegressionAccuracy(float val) = 0; virtual void setTruncatePrunedTree(bool val) = 0; virtual void setUse1SERule(bool val) = 0; virtual void setUseSurrogates(bool val) = 0; static Ptr<DTrees> create(); static Ptr<DTrees> load( const String& filepath, const String& nodeName = String() ); protected: // methods void writeFormat(FileStorage& fs) const;
Detailed Documentation
Boosted tree classifier derived from DTrees.
See also:
Methods
virtual int getBoostType() const = 0
Type of the boosting algorithm. See Boost::Types. Default value is Boost::REAL.
See also:
virtual int getWeakCount() const = 0
The number of weak classifiers. Default value is 100.
See also:
virtual double getWeightTrimRate() const = 0
A threshold between 0 and 1 used to save computational time. Samples with summary weight \(\leq 1 - weight_trim_rate\) do not participate in the next iteration of training. Set this parameter to 0 to turn off this functionality. Default value is 0.95.
See also:
virtual void setBoostType(int val) = 0
See also:
virtual void setWeakCount(int val) = 0
See also:
virtual void setWeightTrimRate(double val) = 0
See also:
static Ptr<Boost> create()
Creates the empty model. Use StatModel::train to train the model, Algorithm::load <Boost>(filename) to load the pre-trained model.
static Ptr<Boost> load( const String& filepath, const String& nodeName = String() )
Loads and creates a serialized Boost from a file.
Use Boost::save to serialize and store an RTree to disk. Load the Boost from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
Parameters:
filepath | path to serialized Boost |
nodeName | name of node containing the classifier |