Machine Learning
Overview
The Machine Learning Library (MLL) is a set of classes and functions for statistical classification, regression, and clustering of data. Moreā¦
// enums enum cv::ml::ErrorTypes; enum cv::ml::SampleTypes; enum cv::ml::VariableTypes; // classes class cv::ml::ANN_MLP; class cv::ml::Boost; class cv::ml::DTrees; class cv::ml::EM; class cv::ml::KNearest; class cv::ml::LogisticRegression; class cv::ml::NormalBayesClassifier; class cv::ml::ParamGrid; class cv::ml::RTrees; class cv::ml::SVM; class cv::ml::SVMSGD; class cv::ml::StatModel; class cv::ml::TrainData; // global functions void cv::ml::createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses, OutputArray samples, OutputArray responses ); void cv::ml::randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples );
Detailed Documentation
The Machine Learning Library (MLL) is a set of classes and functions for statistical classification, regression, and clustering of data.
Most of the classification and regression algorithms are implemented as C++ classes. As the algorithms have different sets of features (like an ability to handle missing measurements or categorical input variables), there is a little common ground between the classes. This common ground is defined by the class cv::ml::StatModel that all the other ML classes are derived from.
See detailed overview here: Machine Learning Overview.
Global Functions
void cv::ml::createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses, OutputArray samples, OutputArray responses )
Creates test set.
void cv::ml::randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples )
Generates sample from multivariate normal distribution.
Parameters:
mean | an average row vector |
cov | symmetric covariation matrix |
nsamples | returned samples count |
samples | returned samples array |