class cv::ml::LogisticRegression
Overview
Implements Logistic Regression classifier. Moreā¦
#include <ml.hpp> class LogisticRegression: public cv::ml::StatModel { public: // enums enum Methods; enum RegKinds; // methods virtual Mat get_learnt_thetas() const = 0; virtual int getIterations() const = 0; virtual double getLearningRate() const = 0; virtual int getMiniBatchSize() const = 0; virtual int getRegularization() const = 0; virtual TermCriteria getTermCriteria() const = 0; virtual int getTrainMethod() const = 0; virtual float predict( InputArray samples, OutputArray results = noArray(), int flags = 0 ) const = 0; virtual void setIterations(int val) = 0; virtual void setLearningRate(double val) = 0; virtual void setMiniBatchSize(int val) = 0; virtual void setRegularization(int val) = 0; virtual void setTermCriteria(TermCriteria val) = 0; virtual void setTrainMethod(int val) = 0; static Ptr<LogisticRegression> create(); static Ptr<LogisticRegression> load( const String& filepath, const String& nodeName = String() ); };
Inherited Members
public: // enums enum Flags; // methods virtual void clear(); virtual bool empty() const; virtual String getDefaultName() const; virtual void read(const FileNode& fn); virtual void save(const String& filename) const; virtual void write(FileStorage& fs) const; template <typename _Tp> static Ptr<_Tp> load( const String& filename, const String& objname = String() ); template <typename _Tp> static Ptr<_Tp> loadFromString( const String& strModel, const String& objname = String() ); template <typename _Tp> static Ptr<_Tp> read(const FileNode& fn); virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const; virtual bool empty() const; virtual int getVarCount() const = 0; virtual bool isClassifier() const = 0; virtual bool isTrained() const = 0; virtual float predict( InputArray samples, OutputArray results = noArray(), int flags = 0 ) const = 0; virtual bool train( const Ptr<TrainData>& trainData, int flags = 0 ); virtual bool train( InputArray samples, int layout, InputArray responses ); template <typename _Tp> static Ptr<_Tp> train( const Ptr<TrainData>& data, int flags = 0 ); protected: // methods void writeFormat(FileStorage& fs) const;
Detailed Documentation
Implements Logistic Regression classifier.
See also:
Methods
virtual Mat get_learnt_thetas() const = 0
This function returns the trained paramters arranged across rows.
For a two class classifcation problem, it returns a row matrix. It returns learnt paramters of the Logistic Regression as a matrix of type CV_32F.
virtual int getIterations() const = 0
Number of iterations.
See also:
virtual double getLearningRate() const = 0
Learning rate.
See also:
virtual int getMiniBatchSize() const = 0
Specifies the number of training samples taken in each step of Mini-Batch Gradient Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It has to take values less than the total number of training samples.
See also:
virtual int getRegularization() const = 0
Kind of regularization to be applied. See LogisticRegression::RegKinds.
See also:
virtual TermCriteria getTermCriteria() const = 0
Termination criteria of the algorithm.
See also:
virtual int getTrainMethod() const = 0
Kind of training method used. See LogisticRegression::Methods.
See also:
virtual float predict( InputArray samples, OutputArray results = noArray(), int flags = 0 ) const = 0
Predicts responses for input samples and returns a float type.
Parameters:
samples | The input data for the prediction algorithm. Matrix [m x n], where each row contains variables (features) of one object being classified. Should have data type CV_32F. |
results | Predicted labels as a column matrix of type CV_32S. |
flags | Not used. |
virtual void setIterations(int val) = 0
See also:
virtual void setLearningRate(double val) = 0
See also:
virtual void setMiniBatchSize(int val) = 0
See also:
virtual void setRegularization(int val) = 0
See also:
virtual void setTermCriteria(TermCriteria val) = 0
See also:
virtual void setTrainMethod(int val) = 0
See also:
static Ptr<LogisticRegression> create()
Creates empty model.
Creates Logistic Regression model with parameters given.
static Ptr<LogisticRegression> load( const String& filepath, const String& nodeName = String() )
Loads and creates a serialized LogisticRegression from a file.
Use LogisticRegression::save to serialize and store an LogisticRegression to disk. Load the LogisticRegression from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
Parameters:
filepath | path to serialized LogisticRegression |
nodeName | name of node containing the classifier |