class cv::ml::ParamGrid
Overview
The structure represents the logarithmic grid range of statmodel parameters. Moreā¦
#include <ml.hpp> class ParamGrid { public: // fields double logStep; double maxVal; double minVal; // construction ParamGrid(); ParamGrid( double _minVal, double _maxVal, double _logStep ); // methods static Ptr<ParamGrid> create( double minVal = 0., double maxVal = 0., double logstep = 1. ); };
Detailed Documentation
The structure represents the logarithmic grid range of statmodel parameters.
It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate being computed by cross-validation.
Fields
double logStep
Logarithmic step for iterating the statmodel parameter.
The grid determines the following iteration sequence of the statmodel parameter values:
where \(n\) is the maximal index satisfying
The grid is logarithmic, so logStep must always be greater then 1. Default value is 1.
double maxVal
Maximum value of the statmodel parameter. Default value is 0.
double minVal
Minimum value of the statmodel parameter. Default value is 0.
Construction
ParamGrid()
Default constructor.
ParamGrid( double _minVal, double _maxVal, double _logStep )
Constructor with parameters.
Methods
static Ptr<ParamGrid> create( double minVal = 0., double maxVal = 0., double logstep = 1. )
Creates a ParamGrid Ptr that can be given to the SVM::trainAuto method.
Parameters:
minVal | minimum value of the parameter grid |
maxVal | maximum value of the parameter grid |
logstep | Logarithmic step for iterating the statmodel parameter |