Shape Distance and Matching
Overview
// classes class cv::AffineTransformer; class cv::ChiHistogramCostExtractor; class cv::EMDHistogramCostExtractor; class cv::EMDL1HistogramCostExtractor; class cv::HausdorffDistanceExtractor; class cv::HistogramCostExtractor; class cv::NormHistogramCostExtractor; class cv::ShapeContextDistanceExtractor; class cv::ShapeDistanceExtractor; class cv::ShapeTransformer; class cv::ThinPlateSplineShapeTransformer; // global functions Ptr<AffineTransformer> cv::createAffineTransformer(bool fullAffine); Ptr<HistogramCostExtractor> cv::createChiHistogramCostExtractor( int nDummies = 25, float defaultCost = 0.2f ); Ptr<HistogramCostExtractor> cv::createEMDHistogramCostExtractor( int flag = DIST_L2, int nDummies = 25, float defaultCost = 0.2f ); Ptr<HistogramCostExtractor> cv::createEMDL1HistogramCostExtractor( int nDummies = 25, float defaultCost = 0.2f ); Ptr<HausdorffDistanceExtractor> cv::createHausdorffDistanceExtractor( int distanceFlag = cv::NORM_L2, float rankProp = 0.6f ); Ptr<HistogramCostExtractor> cv::createNormHistogramCostExtractor( int flag = DIST_L2, int nDummies = 25, float defaultCost = 0.2f ); Ptr<ShapeContextDistanceExtractor> cv::createShapeContextDistanceExtractor( int nAngularBins = 12, int nRadialBins = 4, float innerRadius = 0.2f, float outerRadius = 2, int iterations = 3, const Ptr<HistogramCostExtractor>& comparer = createChiHistogramCostExtractor(), const Ptr<ShapeTransformer>& transformer = createThinPlateSplineShapeTransformer() ); Ptr<ThinPlateSplineShapeTransformer> cv::createThinPlateSplineShapeTransformer(double regularizationParameter = 0); float cv::EMDL1( InputArray signature1, InputArray signature2 );
Detailed Documentation
Global Functions
Ptr<AffineTransformer> cv::createAffineTransformer(bool fullAffine)
Complete constructor
Ptr<ThinPlateSplineShapeTransformer> cv::createThinPlateSplineShapeTransformer(double regularizationParameter = 0)
Complete constructor
float cv::EMDL1( InputArray signature1, InputArray signature2 )
Computes the “minimal work” distance between two weighted point configurations base on the papers “EMD-L1: An efficient and Robust Algorithm for comparing histogram-based descriptors”, by Haibin Ling and Kazunori Okuda; and “The Earth Mover’s Distance is the Mallows Distance: Some Insights from Statistics”, by Elizaveta Levina and Peter Bickel.
Parameters:
signature1 | First signature, a single column floating-point matrix. Each row is the value of the histogram in each bin. |
signature2 | Second signature of the same format and size as signature1. |